

Produced in response to a demand for a high sensitivity version of the worldfamous Universal AvoMeter, this model incorporates the traditional design features of its predecessors, so highly valued for simplicity of operation and compact portability.
It has a sensitivity of 20,000 ohms per volt on all D.C. voltage ranges and 1,000 ohms per volt on A.C. ranges from 100 V . upwards. A decibel scale is provided for audio frequency tests. In addition, a press button has been incorporated which reverses the direction of current through the moving coil, and thus obviates the inconvenience of changing over test leads when the current direction reverses. It also simplifies the testing of potentials, both positive and negative, about a common reference point. A wide range of resistance measurements can be made using internal batteries, separate zero adjustment being provided for each range.
It is of importance to note that this model incorporates the "AVO" automatic cut-out for protection against inadvertent overloads.

D.C. VOLTAGE	D.C. CURRENT	A.C. VOLTAGE
2.5 V.	$50 \mu \mathrm{~A}$	2.5 V.
10 V.	$250 \mu \mathrm{~A}$.	10 V
25 V.	1 mAA	25 V
100 V.	10 mA.	100 V.
250 V.	10 mA.	250 V
1.000 V.	1 A.	$1,000 \mathrm{~V}$.
$2,500 \mathrm{~V}$.	10 A.	$2,500 \mathrm{~V}$

product!

22 gns
MODEL TR2
200/250 volts
A.C. mains only

1. Three motor drive.
2. "Drop-in" Tape loading.
3. Push-button control, electrically and mechanically interlocked.
4. Scparate push-button brake.
5. "Fast-forward" and "fast-rewind" without tape wear.
6. Silent drive eliminating "wow" and "flutter."

TRUVOX
 EXHIBITION GROUNDS • WEMBLEY • MIDDX
 Telephone: Wembley 1212
 LIMITED

7. Half-track working, and two Tape speeds of $7 \frac{1}{2}$ inches per second, or 33 inches per second.
8. Visual playing-time indicator.
9. With a suitable amplifier, the equipment covers a frequency range from $50-10,000$ c.p.s. at $7 \frac{1}{2}$ inches per second.

Specially designed for your new portable communications equipments..... DIRECTLY-HEATED

Combining outstanding electrical performance with small size and extremely low power consumption, this new Mullard range of battery subminiatures offers special advantages in compact telecommunications equipment of the "Hand talkie" and "Walkie talkie" nature, where space, weight, and available battery power are limiting factors.

With the exception of the DL70 R.F. output valve, these subminiatures have filament current ratings of only 25 milliamperes; the DL70, despite its power function, operates from the comparatively low filament current of 110 milliamperes.

Brief technical details of the current range of Mullard battery subminiatures for communications equipment are given below. Other subminiatures, including R.F. output types that will operate with high efficiencies at frequencies of up to $500 \mathrm{Mc} / \mathrm{s}$, are now under development, and details of these will be made available shortly.

Complete technical details, including characteristic curves, of both battery and indirectly-heated subminiatures will be gladly supplied on request.

Type No.	Description	Filament (V) (mA)	$\begin{gathered} \mathrm{Va}=\mathrm{Vg} 2 \\ (V) \end{gathered}$	$\begin{aligned} & \vee g! \\ & (V) \end{aligned}$	$\begin{gathered} 1 \mathrm{a} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \lg 2 \\ (\mathrm{~mA}) \end{gathered}$	$\underset{(\mathrm{mA} / \mathrm{V})}{\mathrm{g}_{\mathrm{m}}}$
DAF70	A.F. pentode combined with single diode	$1.25 \quad 25$	67.5	0	1.0	0.25	0.44
DF72	R.F. pentode with sharp cut-off	$1.25 \quad 25$	67.5	0	1.7	0.5	1.0
DF73	Variable-mu R.F. pentode...	$1.25 \quad 25$	67.5	0	1.7	0.5	0.8
DL70	R.F. output pentode	$1.25 \quad 110$	150	-7.5	6.5	1.4	1.5
DL75	Output pentode ...	$1.25 \quad 25$	90	-2.5	1.75	0.4	0.85

Mullard

A major contribution toward the rapid establishment of communications in overseas territories, the Pye-Ericsson V.H.F. multiplex radio-telephone system has been fully developed to provide reliable telephone links wherever wire and cable circuits are impractical or, as is often the case, uneconomic.
Standard carrier technique is retained and the system will commend itself to administrations already combining speech channels for transmission over wire circuits.

> Designed and Manufactured by
> PYE LIMITED and ERICSSON TELEPHONES LTD.
 Cambridge, England.

. . . with safety in the hazardous enterprise of the deep sea trawler is its radio and radar equipment upon which safe navigation depends. Thousands of soldered joints contribute to the efficient functioning of this delicate apparatus. One dry or H.R. joint could mean the breakdown of a circuit, the destruction of the vital link, a perilous voyage.

faultless fluxing preserves the Yital link

Dry or H.R. joints are impossible with Superspeed for the flux is always released in exactly the correct proportion. This faultless Huxing action is

*achieved by the unique STELLATE core which gives six points of rapid solder collapse. At soldering temperature the activated rosin flux is released immediately for effective sprealing and wetting. Superspeed is being used more and more in the production of radio and radar equipment where faultless joints are essential.

[^0]

Did you build your own T/V receiver?

If so, and you have a $9^{\prime \prime}$ or $12^{\prime \prime}$ set and now want to convert to big-screen viewing, how better than by using an 'English Electric' $\mathbf{I 6 " \prime}^{\prime \prime}$ Tgor Metal C.R. tube.

To help you carry out the work our leaflet EVro3A gives you the complete line and frame scanning information necessary, together with a suggested list of required components.

And why a T901-because it offers you brilliance, long life, high safety factor, ease
of handling and withal it is British made.
It is the tube specified by the designers of the 'Tele-King' and 'Magnaview' circuits and 'Viewmaster' conversion circuit.

Brilliant black and white picture focussing over entire screen area with excellent contrast range; high optical quality glass face plate; wide angle scanning (70°); fitted ion trap; overall length $17 \frac{11}{16}^{\prime \prime}$, diameter 16 ".

'ENGLISH ELECTRIO'

BRITISH MADE LONG LIFE $16{ }^{\prime \prime}$ T90I METAL C.R. TUBE

If you have any difficulty in obtaining supplies write to:
The ENGLISH ELECTRIC Company Limited, Television Department, Queens House, Kingsway, London, W.C.z.

NEARITE NTM,

 VIBRATORS

 VIBRATORS \&
 VIBRAPOWER UNITS

for Low voltage D.C. operated Electronic Equipment

THE range of Wearite/OAK vibrators for car radios and mobile telecommunications equipment has been especially designed for long and dependable service, whatever the extremes of climate.

The main structure is of steel and mica, so that expansion at varying temperatures is uniform, the base being sealed by the special Wearite process. The main contacts are ground to extreme limits of flatness and certain starting at the lightest of pressures and voltages is obtained by the use of non-tarnishable precious metal driving contacts. The vibrator is acoustically and electrically shielded by its sponge-rubber lined metal can.

A complete range-synchronous, non-synchronous and split-reed synchronous types-is available for all makes of car radio and other mobile equipment.

Vibrapower Units are completely self-contained
assemblies for providing H.T. power from a 6 or 12 volt D.C. source. They include a tapped transformer for the selection of output voltage, buffer capacitors and basic R.F. filtering, and a Wearite/OAK vibrator of a type depending on input voltage. Provision is made for the earthed input pole to be connected to positive or negative as required.
H.T. smoothing is not included and must be externally connected, the value depending on the efficiency desired. An input filter must also be used.

The units are completely screened and are mounted on four rubber buffers to prevent possible transmission of vibration to other equipment. Full details of Wearite/OAK Vibrators and Vibrapower Units are available on request.

* Wearite vibrators are manufactured under license of the Oak Manufacturing Co. of Chicago and are covered by various patents.

WRIGHT \& WEAIRE LTD

The Tape Player itself is of unit construction which enables many special requirements and applications to be met without undue modification. The following features can be provided to special order:-

Tape speeds $7 \frac{1}{2 \prime \prime}^{\prime \prime}$ and 15^{n} per second, or $37^{\prime \prime}$ and $1 \frac{1}{" \prime \prime}^{\prime \prime}$ per second.
-
Synchronous drive motor.

Remote operation or foot control.
-
Automatic back spacing and reverse drive for dictation purposes.
-
Cassette tape loading.
-
Rack mounted assembly.

TAPE SPEEDS
TRACKS
PLAYING TIME PER TRACK

SPOOLS

SENSE OF SPOOLING
REWIND TIME
HEADS

TAPE
OPERATION
$7 \frac{1}{2}^{\circ}$ and $3 \frac{1}{2}^{\circ}$ per second.
-1" wide. Number of tracks 2. 30 minutes at $7 \mathrm{t}^{*}$ " per second. 60 minutes at 3 3 per second.
Standard 7* and 5* plastic or metal.
From left to right with tape coating inwatds.
One minute for $1,200 \mathrm{fr}$. of tape (approx.).
R.F. erase head. Record/ playback head off-set for recording on upper track. Provision on player unit for additional monitoring head for special applications.
Single control provides:Record, Playback. Fast Forward, Cueing, Rewind.
To ensure additional safety against accidental crase, an dditional record / playback switch is provided on the amplifier assembly power and mplation is by means of brake operation is by means of a relay which will enable re.
mote operation to be provided in special applications.

FREQUENCY RESPONSE

DISTORTION

SIGNAL/NOISE RATIO

INPUTS
(1) Up to 50 ohms low level -110 db . microphone input.
(2) High Z up to 100 K at 1 v . unbalanced (radio input).

OUTPUTS
(1) $2 \frac{1}{2}$ ohms at 3 watts to in ternal loudspeaker.
(2) 15 ohms at 3 watts for ex. ternal speaker.

NOW AND

 FLUTTERTotal wow and flutter content less than $\cdot 2 \%$.

MAINS SUPPLY $200 / 250$ v. 50 cycles 230 V.A. Other volrages and frequencies supplied to special order

DIMENSIONS
16° wide $\times 11^{*}$ high $\times 18^{*}$ deep approx.

45 lbs.
At $7 \frac{10}{}{ }^{2}$ per second $60-10,000$ C.P.S. plus or minus 3 db . At 33° per second 70-7,000 C.P.S. plus or minus 3 db .

Less than $2 \frac{1}{2} \%$ total harmonic distortion at normal operating level.
WEIGHT 45 lbs

SOLARTRON ANNOUNCE

The New

Phase Sensitive Voltmeter Model VP. 250

STAND No.10G British Instrument Industries Exhibition Fune 30th-Fuly 11th 1953

Note these features:

\star Simultancous display of reference and quadrature signal components on 6 in . centre zero meters calibrated in volts.
\star Seven half decade sensitivity ranges covering 15 mV . -15 volts full scale.
\star Constant 50 megohms input impedance for both reference and signal channels.
\star High accuracy not affected by harmonics in signal under test.

Covering a frequency range of $20 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$ this instrument will measure the "in phase" and
"quadrature" components of an applied test voltage, with respect to a given reference voltage. Provided the latter is of sine wave form, the readings will not be affected by harmonics or spurious frequencies.
An ideal instrument for the measurement of transmission characteristics of amplifiers, networks, transformers, high speed servo systems, etc.
Its resolved component presentation with harmonic free response makes it a suitable detector for A.C. strain gauge systems or for any pick-up with an A.C. output.

Model AWS. 5IA.
Model AWS. 53
Modet OPS l01. Model OS.101.
Model SRS. 151
Model AT. 201.
Model SRS. 152.

SOLARTRON LABORATORY INSTRUMENTS LTD
TEL: KINGSTON 8981 PBX

E.M.I wantur EXPERIMENTAL KIT

LEARN THE PRACTICAL WAY

A specially prepared set of radio parts from which we teach you, in your own home, the working of fundamental electronic circuits and bring you easily to the point when you can construct and service a radio set. Whether you are a student for an examination, starting a new hobby, intent upon a career in industry, or running your own business - this Course is intended for YOU - and may be yours at a very moderate cost. Available on Easy Terms. WE TEACH VOU: Basic Electronic Circuits (Amplitier. Oscillators, Power Units, etc.) Complete Radio Receiver Testing \& Servicing.

POST IMMEDIATELY FOR FREE DETAILS

© TO: E.M.I. INSTITUTES, DEPT. 16X
Grove Park Road, Chiswick, London, W. 4
I Name
Address
1.C. 12

Thivox

Profitable P.A. business is built upon a reputation for reliability which can only be based on the dependability of your equipment. That is why it pays to use only TRUV.OX, the reproducers that have had reliability built into them for a quarter of a century.

TRUVOX PRESSURE TYPE DRIVING UNITS

Senior and Junior models have a power handling capacity of 15 and 10 watts respectively and provide a substantially linear response from 175 to 10,000 c.p.s. The Senior model is available with bult-in tropicalised multi-ratio transformer, a noteworthy feature much appreciated by sound engineers

For Full Details Write to :

THE ELAC "DUOMAG" FOCALISER

THE
 SENSATIONAL NEW ELAC T/V COMPONERT

The DUOMAG focaliser gives precision beam focus and complete ficture positioning with minimum effect on scan coils and ion trap assem blies. It is designed for use with magneti:ally focused tubes having $38 \mathrm{~m} / \mathrm{m}$ dianeter necks.

DUOMAG is a permanent magnet type unit using two concentrically mounted Sintered Oxide ring magne:s arranged with oppcsed magnetic fields.

- Minimum stray magnetic -ield. Symmetrical, uniform and very low external field. - Magnets of high electrical resistivity enable the unit to be placed in cloie proximity to high efficiency scan coils.
- All insulated construction-No risk of high voltage shock.

Wide range picture shift.
RETAIL PRICES IN U.K.
Low Flux, $37 / 6$; Med. Flux, 39/6 ; H gh Flux, 42/-.

For brilliant. high-fidelity sound recording the GRUNDIG 2-speed tape recorder

PUSH button controls and magic-eye tuning give you complete mastery over the Grundig's superb recording and reproducing qualities. The 1,200 feet of tape give you ONE HOUR of high-fidelity music recording and play back. High speed rewind mechanism enables you to reproduce from (or record on) any part of the tape in a few seconds. The same tape can be used repeatedly, each new recording automatically erasing the previous one, or recordings can be kept indefinitely. Sound frequency range : at $7 \frac{1}{2} \mathrm{in}$. per second, $50-10,000 \mathrm{c} / \mathrm{s}$, at $3 \frac{3}{4} \mathrm{in}$. per second, $50-6,000 \mathrm{c} / \mathrm{s}$.
\star Condenser microphone.

* Remote controls-hand or foot operated.
* Two-way telephone recorder-without alteration to handset.
* As compact and portable as a suitcase.

THE

> GRUIDIG Reporter 700L TWO.SPEED TAPE RECORDER Not only a revelation but a revolution in tape recording!

GRUNDIG (GT. BRITAIN) LIMITED, KIDBROOKE PARK ROAD, LONDON, S.E.3.

Recognised as the Most Reliable Valveholders

B7G Valveholders

are now available moulded in:Phenol Formaldehyde (Black). Nylon loaded Phenol Formaldehyde
(Natural Brown). P.T.F.E.

I^{7}is logical that an amplifier of excellent electronic design should also reflect similar attention to detail in its mechanical design. A typical example in the Q.U.A.D. amplifier is the method of mounting the control unit on a panel or in a cabinet. A cut-out is made in the panel or cabinet, half an inch smaller than the control panel dimensions (templet provided). The back cover of the control unit is removed and the unit inserted into the cut-out from the front. Projecting lugs on the back of the panel casting locate the control panel symmetrically over the cut-out. The cover is now replaced from the back and the cover retaining screws bolt the complete unit firmly in position. The panel or cabinet may be any thickness from $\frac{1}{8}$ in. up to lin. No screws or other methods of fixing are visible from the front-no edge finishing problems are involved-the cabinet or panel is securely fastened over the whole perimeterall desirable features of good design.

THE ACOUSTICAE Q.U.F.D. AMPLIFIER

An amplifier capable of providing the closest approach to the original sound yet achieved. Write for the Q.U.A.D. booklet for full detailed specifications.

Complete in two units as illustrated. 35

> completely fitted FROM THE OUISIDS and READY FOR USE IN FIVE MINUTES! NTIFERENC
L. I M I T E D

BICESTER ROAD, AYLESBURY, BUCKINGHAMSHIRE

IGRANIC JACKS, PLUGS RHEOSTATS POTENTIOMETERS and PRESET RESISTORS

Sole Distributors in the U.K. to the Wholesale and Retail Trade :

BROTHERS

105 Commercial Road Bournemouth, Hants
Bournemouth ©896/7/8

4 Mount Sian Tunbridge Wells, Kent Tunbridge Wells 1668

Modern in conception, design and performance, the E.2., with its exceptionally wide range, not only fulfils to-day's needs of radio and television, but anticipates the requirements of tomorrow. More than ordinary care has been used in screening and filtering. As a result, stray field is less than $3_{\mu} V$. at $100 \mathrm{Mc} / \mathrm{s}$. - Frequency accuracy of $\pm 1 \%$ extends over the whole range. Output voltage $1_{\mu} V$. to 100 mv . and approx. 1v. at full R.F. Socket. Internal modulation; external modulation to $\mathbf{8 0} \%$
A.F. Output variable 0-50v. at 400c/s. Size $13^{\prime \prime} \times 10^{1_{4}^{\prime \prime}} \times 8^{\prime \prime}$. Weight $17 \frac{1}{2}$ lbs.

ADVANCE TYPE E2

$$
100 \mathrm{Kc} / \mathrm{s}-100 \mathrm{Mc} / \mathrm{s} \mathrm{ON}
$$

FUNDAMENTALS

Full Technical Details available in Folder S/I4/W

This very popular versatile 12 in . Single Cone Loudspeaker can be used for a variety of applications where good quality commercial reproduction is required with Audio Inputs of up to 15 watts. Emphasis is laid on the robust construction that takes into account the conditions met with in some P.A. applications.
The AUDIOM 60 is eminently suitable for general public address use, e.g. Small Theatres, Dance Halls, Ice Rinks and Amateur Cinema Installations. Other more specialised applications include Bass Units in multi-speaker combinations, Radiograms, Electronic Organs, Electric Guitars, or Amplified String Instruments.
Naturally we can only list a few of the many uses, although we are always pleased to give advice on specialised requirements.
Goodmans Heavy Duty Output Transformer type H. 4 is specifically recommended for use with this Loudspeaker.

cooinans

GOODMANS INDUSTRIES LTD. Axiom Works, Wambly, Middx.
Telephon:: WEMbley 1200. Telegrams: Goodaxiom, Wembley, Eng

THE GOLDRING MAGNA CARTRIDGE

- A magnetic Turnover Cartridge with high output and cantilever styli.
Entirely new principle. (Pat. applied for.)
- Output comparable to crystal pickups.
- Cantilever styli give minimum record wear and eliminate needletalk.
- Styli easily replaceable.

Smooth extended frequency
response on both standard and L-P. records.
The ideal replacement Cartridge for 3 -speed record changers and units.
Of special interest to the designer of new equipment.
Write for full technical information to :-

ERWINSERERE

49-51a. DE BEAUVOIR ROAD N.i Telephone: CL/ssold 3434-5-6

$\underset{\substack{\text { Expor Ennediries }}}{\text { J. \& S. NEWMAN Ltd. }}$

100 HAMPSTEAD RD., LONDON, N.W. 1 Telephone: EUSton $5176 / 7$

Marconi Television for Canada

The U.S.A., Italy, Venezuela, Thailand, Canada-these a-e sore of the

Equipment supplied includes:

- Marconi Image Orthicon Cameras
- 5 kW vision transmitters
- 3 kW sound transmitters
- High-gain aerial systems
- Associated monitoring and control equipment
ccuntries which have specifed Marconi television equipmen.

In Canada, Montreall and Toronto already possess Marconitelevision stixtios installed by the Eanadian Marconi Company. The new Marconi Transmitter for Ottawa is an important link in the televsion chain planned by Canadian Broadcasting Corporation to span the entire country.

Marconi high or medium power transmitters, and high power aerials are installed in every one of the B.B.C.'s television transmitter stations.

> MARCONI
television transmitting equipment

G.E.C. radio equipment for H.F. and V.H.F. communication has been developed with two important advantages from the purchaser's point of view constantly in mind. Suitability for the exact operational need and reliability. These advantages are entirely due to the long and valuable experience of the G.E.C. in all branches of radio engineering. backed by its unique research organisation.
Equipment is available for every kind of radio communication requirement - police, ambulance and fire services, aircraft, shipping, etc. The general purpose receiver shown here is the BRT400D, built to meet the most exacting needs of commercial service in all parts of the world, providing high grade telegraphy service and quality reception for re-broadcast.

PROGRESS

 in Counting ~ through the agesHISTOAICAL illusirations BY CCURTESY of The SCIENCE MUSEUM LONDON.

NAP|ER'S BONES

Devised in 1617 by John Napier. a Scottish nobleman as a mechanical means of nu tiplication by addition. $x^{2}-2$

LEBBHITZ'S
STEPPED
RECKONER
invented in 1694 by the German philosopher ard incaporated in the eariest pracicable calculating mactines

COUNTING•CALCULATING SELECTING•SWIICHING

Cathode

 TubesFOR
Modern

HIVAC
COLD CATHCCE
TUBES
Tle most modern deeices for usz in electronic syoterts

THE AUTOMATIC COIL WINDER \& ELECTRICALEQUIPMENT CO. LTD.
WINDER HOUSE DOUGLAS STREET
LONDON S.W.I

PAINTON

amman is

The appointment to the Shapesioná Ongisuepe. ...

ATtENUATORS FADER . STUD SWITCHES AND TCGGLE SWITCHES WIREWOUND POTENTIOMETERS - HIGH STABILITY CABBON REISTOES WIREWOUND RESISTORS PLUGS AND SOCKETS : TERMINALS KNOBS DIALS AND POINTERS

HIGH STABILITY CARBON RESIS OR
$4 \mathrm{w}, \frac{1}{2} \mathrm{w}, \frac{3}{4} \mathrm{w}$, I w and 2 w types available at $1 \%, 2 \%$ or $\%$ Resis:ance Tolerance. Complete range fully R.C.S.C. approved. For full details request Catalogue, Section E.

The LATEST and IMPROVED TAPE For all popular tape recording machines

Specially wound on transparent perfectly balanced plastic spools which fit easily to all popular types of tape recorders. The advantages of FERROVOICE are now available to all. FERROVOICE improves the performance of all recorders. It provides twin-track recording of the highest standards of quality and faithfulness. Tape wear and rotation noises are reduced to the minimum.
FERROVOICE is the most modern and most efficient tape available.
It brings to all tape recorders the highest standards of recording. "s and reproduction.
Technical features: Super Calendered Kraft Paper-breaking strain approximately 4 lb .-Tape width $0.247^{\prime \prime} \pm 0.001^{\prime \prime}$. Medium coercivity ease of erasure-frequency response 50 c/s to $10 \mathrm{Kc} / \mathrm{s}^{\circ}$ at $7 \frac{1}{2}$ " per second. Length of tape $1,200 \mathrm{ft}$. Spool $7^{\prime \prime}$ diameter.
NOTE THESE OUTSTANDING FEATURES \star TWIN-TRACK RECORDING WITH UNIFORM RESPONSE. \star HIGH PLAYYBACK LEEEL AND LOW NOISE COMPONENT. ネ LIGHTWEGGHT PRECISION BALANCED SPOOL. \star FERROVOICE SPOOLS KEEP WEAR. TEAR AND ROTATION
NOISE TO A MINIMUM.

REGD
PRICE
'phone: SLOane 9129

 tabgear
zabgear

Labgear Cambridge) Limited

 WILLOW PLACE, CAMBRIDGE, ENGLAND Telephone: CAMBRIDGE 2494 (2 lines) Telegraphic Address:"LABGEAR, CAMBRIDGE"

SUSPENSION DRAWER SLIDES, SUN and PLANET FRICTION ELIMINATORS and SHEAVES Ask for Brochure and pages 47, 49 and 53

Engineers, Patentees and Sole Manufacturers.
AUTOSET (PRODUCTION) LTD. DEPT. " H ", STOUR STREET, BIRMINGHAM I8
Tel.: EDG. 1143/44
Please mention Wireless World
ESTD over 30 years

keep up-to-date with MARCONI

We would like to draw the attention of all our friends to the new instrument catalogue. This handsomely bound publication records the latest developments in the communication and industrial fields - as have our loose-leaf catalogues up to now. But techniques advance as Marconi research progresses, and for clarity's sake all available data has been re-cast in
the new format. We hope this will prove even more valuable to you than its predecessors.

If you are on our existing mailing list, you will have your new Marconi Instruments catalogue this month. But do jog our memory if, by chance, we overlook you - we want every executive who really needs one to have a copy.

MARCONI instruments

SIGNAL GENERATORS • BRIDGES • Q.METERS • OUTPUT METERS • WAVE METERS
WAVE ANALYSERS BEAT FREQUENCY OSCILLATORS AND INDUSTRIAL ELECTRONIC INSTRUMENTS

MARCONI INSTRUMENTS LIMITED • ST. ALBANS • HERTFORDSHIRE

Midland Office: 19 The Parade, Leamington Spa.
Northern Office : 30 Albion Street, Kingston-upon-Hull.
Export Office: Marconi House, Strand, London, W.C.2.

C. 58

T.V. AERIAL

A very efficient aerial at a highly competitive price.
Quickly and easily assembled and erected.

All the principal 'Telecraft' features. . $15 \mathrm{spac}-$ ing, 5 ft . steel stand-off arm. Complete in every detail

£4-3-6

There is a TELECRAFT AERIAL for every contingency-indoors or out
Send for Descriptive Literature.

Quadrant Road, Thornton Heath, Surrey. THOrnton Heath 1191-2-3

Depot Addresses :
NEWCASTLE-ON-TYNE. 55, Northumberland Street.
Telephone: Newcast/e 22516.
BRistol. i4, Rose Street, Temple Way, Bristol, I
Telephone : 21230 .
MANCHESTER. 172, London Road, Manchester.
Telephone : Ardwick 2734.
BIRMINGHAM. 75. Holyhead Road, Handsworth.
Telephone : North 6301 (Ext. 2).
CARDIFF. I \& 2 Stuart Sireet, Cardiff.
Telephone : Cardiff 25955.
GLASGOW. 423, Clarkston Road, Glasgow, S.4.
BOURNEMOUTH. Canford Chambers, St. Peter's Road.
Telephone : 2282
PLYMOUTH. 25, William Street (City Centre)
Telephone : 4797.
DRIGHTON. 81A, Queens Road, Brighton.
Telephone: 28117.

MANUFACTURERS OF

AUTOMATIC AND HAND

 COIL WINDING MACHINESALSO STRIP WINDING
SOLE AGENTS ABROAD
K. G. Khosla \& Co.. 1 Original Road (Opp. Paharganj Police Station), New Delht 1, India.
Etabits Octave Houart, 14 Qual de L'Industrie, Sclessin-lez-Liege.
R. H. Cunningham. Pty., Ltd.. 118 Wattletree Road. Armadale, S.E.3, Victoria, Australla.
Heftye \& Frogg, Oslo, Norway, Storgaten, 15.
Technical \& Industrial Services, P.O. Box 60, Claremont. Cape Town.

YOUR ENQUIRIES ARE INVITED

ETA TOOL CO

(LEICESTER) LTD
29A WELFORD ROAD, LEICESTER
Phone 5386

ABOVE ALL OTHERS

POTTED AND
COMPOUND FILLED TRANSFORMERS AND CHOKES
made by Woden are the answer when the call is for transformers to operate under exacting operate under exacting industrial conditions, coupled with adverse climatic conditions.

Every transformer leaving our factory is subjected to a rigid inspection, and is fully impregnated with moisture proof filling compound by the latest vacuum and pressure process. The fact that "WODEN" are the choice of many leading radio and television manufacturers is proof enough of the quality of our oroducts.

Please send for latest Catalogut

KIODENTRGUSFORMER C? LT:

MOXLEY ROAD, BILSTON, STAFFS.
telephone: bilston 41959

TEMPERATURE

Coronution fever is over. Demand for television sets is more managcable. For a few weeks radio and television manufacturers will, we hope, have time to think about the autumn demand-and perhaps even to enjoy some recuperative sunshine! May we suggest that part of this respite could be profitably spent in studying the special features of the new range of R.\& A. Reproducers? These features include:

* Co-axial construction for accurate and permanent alignment.
* Zero external magnétic field.

High sensitivity, with magnet assemblies in the ' 800 ' Series of 7,000 to ro,000 Gauss, and in the ' 900 ' Series of 10,000 and 12,000 Gauss.

* Easily removable magnet systems to facilitate overseas service.
Performance and reliability standards which have won world-wide renown.
* Covered by British and Forign Patents.
Manufacturers
Lomitsperker
since 1930
sadio ind

REPRODUCERS AND AMPLIFIERS LIMITED WOLVERHAMPTON ENGLAND

Telephone Wolverhampton 22241 (5 lines)

Telegrams: Audio Wolverhampior

The Cbronotron

A direct reading electronic stop clock for general purpose timing in the millisecond region. The CHRONOTRON is used for timing relays and fuses; speeds of vehicles and projectiles; for testing camera shutters and for physiological investigations. Timing can be controlled by contacts, by a photocell, or by externally generated voltages.

MODEL 25A MODEL 25B MODEL 25C
$0-4$ milfiseconds $\quad 0-40$ milliseconds $\quad 0-40$ microseconds
to $0-1$ second
to $0-10$ seconds

ELECTR ONIC INSTRUMENTS LTD
 R I C H MON D
 $S U R R E Y$
 E N G L A N D

all liv re pres yur reir

with a

Nelhadio

D.C./A.C.CONVERTER

Models for Electric Gromophones from £8 160
Models for

- Radiograms and Autochange Radiograms (inc. 3 -speed motors)
- Radios, Televisions, etc. from £11 166
- Tape Recorders, Dictating Machines, etc.

Input, 6, 12, 24, 32, 50, 110 or $200 / 250 \mathrm{~V}$. D.C. Output 230V. 50 or $60 \mathrm{c} / \mathrm{s}$.
Descripitive iterature W.W.30. from the manffacturers

VALRADIO LIMITED

NEW CHAPEL RD., HIGH ST., FELTHAM, MIDDX. Tel. FELtham 4242 Service Dept.: 57 Fortess Rd., London, N W.5. Tel.: GULliver 5165 \& 7202 Scottish Depot: 257 Gorbals Street, Glasgow, C. 5.

Tel.: South 1326 Overseas enquiries to nearest E.M.I. Organisation Depot.

Push Pull 6V6s 15 db neg. feed back $25-18,000 \mathrm{cps} \pm 1 / \mathrm{db}$. Hum Level_ 80 db at $6 \frac{1}{\frac{1}{2}}$ watts. Bass boost-Treble boost and cut : LP cor- 16 gns. The above Amplifier can now be supplied in kit form. $£ 13,13,0$
Complete with fully illustrated instruction book. $£ 13.13 .0$
METAL COVERS SUPERHET FEEDER complete with carrying handle, can Three wavebands-B8A Valves. now be supplied at $17 / 6$ each. an
 7 ks band width. Wired complete and tested

(Dept. W.W.)

18 Tottenham Court Road, LONDON, W. 1 Museum 4539. Museum 2453

Shop Hours:
Monday to Friday $9-5.30$ p.m. Saturdays I p.m.
 those of the rectifiers which at present you are using :-

- Less wiring
- Unlimited instaptaneous overload such as the charging current of de-formed electrolytic capacitors.
- Far lower heat dissipation.
- No " warming-up" period.
- No valve-holder.
- Practically indestructible in normal service.
- No limit to size of electrolytic capacitor.
- Saves weight.
- Saves space.
- Low in cost.

Study these RATINGS

TYPE	RM0	RMI	RM2	RM3	RM4
Maximum ambient temperature	$35^{\circ} \mathrm{C} 55^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C} \quad 40^{\circ} \mathrm{C} \quad 55^{\circ} \mathrm{C}$			
Maximum output current (mean)	30 mA 15 mA	60 mA 30 mA	100 mA 60 mA	120 mA 90 mA	275 mA 250 mA 125 mA
Maximum input voltage (r.m.s.)	125 V	125 V	125 V	125 V	250 V
Maximum peak inverse voltage	350 V	350 V	350 V	35 CV	700 V
Max. instantaneous peak current	Unlimited	Unlimited	Unlimited	Unlimited	Unlimited
Weight	0.82 oz .	I oz.	1.4 oz.	2 cz .	4.5 oz.

Srandard Telephones and Cables Limited

(Registered Office: Connaught House, Aldwych, W.C.2)
RECTIFIER DIVISION: Warwick Road, Boreham Wood. Hertfordshire.
Telephone : Elstree 2401 Telegrams: Sentercel, Borehamwood

Brian Rix, G2DQU, successful impresario with a keen interest in Amateur Radio, has a trained ear for the technical merits of the Baird Tape Recorder. "Here is a portable instrument," he says, "with a performance equal to that of costly professional equipment. Its distortion-free true-to-life recordings are the result of many new and impressive advances in high fidelity technique. The finest of all portable recording instruments, it's invaluable at rehearsals."

BAIRD RECORDING TAPE CEMENT is specially prepared for splicing plastic base magnetic tape. Makes clean, quick-setting joints, which are strong and free from creeping. Each bottle is fitted with a brush for easy application. 3/6d.
(post and packing 6d. extra)

BAIRD

THE ALL-BRITISH TAPE RECORDER

BAIRDTELEVISION LTD : LANCELOTROAD: WEMBLEY•MIDDLESEX

for cables of $0.2^{\prime \prime}$ to $1.03^{\prime \prime}$ O.D.
 CO-AX air-spaced articulated Very Low Loss Cables.
Microdual Two-speed Precision Drives.

TRANSRADIO

LTD

138A CROMWELL ROAD, LONDON, SW7,
ENGLAND Telephone: FREmantle 4421 (P.B.X.)

WITH A MINIMUM OF WEAR

Calls for the use of
S. G. BROWN PRECISION SAPPHIRE NEEDLES

No. I "Miniature" Jewel-tipped needle for Lightweight pick-ups.
No. 2 "Straight" Jewel-tipped needle for Crystal pick-ups.
No. 3 "Trailer" Jewel-tipped needle for Medium-weight pick-ups.
No. 4 "Knee Bend Trailer" Jewel-tipped needle for older Heavyweight pick-ups.
No. 5 "Miniature Solid Sapphire" needle for Lightweight pick-ups. PRICES (Subject to full Trade Discount)

$$
\begin{aligned}
& \text { Nos. } 1-4,7 /- \text {, plus } 2 / 4 \text { P.T. } \\
& \text { Post } 6 \mathrm{~d} \text {. }
\end{aligned}
$$

No. S, 9/3, plus 3/I P.T. Post 6d.
There's an S. G. BROWN PRECISION SAPPHIRE NEEDLE for every type of PICK-UP

All S. G. Brown Precision Sapphire Needles are protectively mounted on a useful double-sided stroboscope (78 \& 33-1/3 r.p.m.). An instructive and interesting Brochure with many useful hints on obtaining better reproduction gladly sent on request. Write to Dept. W.
8.6. Brown 1 to

SHAKESPEARE ST., WATFORD, HERTS. Telephone: Watford 7241 .

R. C. OSCILLATOR

AND AUTOMATIC FREQUENCY MONITOR

An instrument of exceptionally high accuracy and stability -the output
frequency of which is automatically measured and presented in decimal notation.

Range	$10 \mathrm{c} / \mathrm{s}$ to $100 \mathrm{kc} / \mathrm{s}$
Accuracy	$\pm 0.005 \%$
Output	0 to 30 volts r.m.s. metered
Attenuator	0 to 110 db in 1 db steps (constant 600Ω)

The equipment will measure any frequency in the range $10 \mathrm{c} / \mathrm{s}$ to
$100 \mathrm{kc} / \mathrm{s}$ and any time in the range $10 \mu \mathrm{sec}$ to $10^{4} \mathrm{sec}$ both to an accuracy within $\pm 0.005 \%$. It will also count up to a maximum rate of 10^{5} pulses/second.

A Company within the J. Arthur Rank Organisation

WORSLEY BRIDGEROAD •LONDON •SE26

[^1]
The Two Extremes

 It is generally agreed that the extreme ends of the Audio frequency range are the most difficult to reproduce. The problem has been intelligently tackled by the design of the Wharfedale W.15/CS and Super 5 units. The W.I5/CS has an open baffle resonance of $28 \mathrm{c} / \mathrm{s}$, and the response is maintained within 5 db between this frequency and $1000 \mathrm{c} / \mathrm{s}$. The Super 5 is now fitted with aluminium dome and the axial response is well maintained between 3000 and 15,000 c / s. as shown by the response curve.These two units, used in a 3-speaker system with a middle speaker of not less than 13,000 lines flux density, will give reproduction of very high quality.

The "RD BABY DE-LUXE MK. II" Amplifier.
The World's finest medium priced amplifier
The improvements effected in this latest version of the already well known "RD BABY" place it in a class apart, unsurpassed by any other amplifier approaching it in price.

NOTE THESE EXCEPTIONAL IMPROVEMENTS :-

* Power Output increased to 8-10 watts.
\& Total harmonic distortion at 8 watts- 25%
* Total harmonic distortion at 12 watts only- $.6 \%$
* Consistent quality maintained at all volume levels.

K Perfect phase splitter balance over the full audio range.
t Perfect phase splitter balance over the full audio

* Close tolerance high stability resistors employed. this vastly improved performance the price remains unchanged at

With the introduction of this new amplifier an improved version of the "RD JUNIOR" pre-amplifier has also been introduced -the "RD JUNIOR MK. II," featuring in particular a variable control for the Low Pass Filter.
Price complete with Engraved Control Panel
$£ 9$.
Detailed technical specifications, including response curves and an illustration, will gladly be forwarded post free on request. Available from leading dealers in London and the Provinces. or if in any difficulty, please apply direct.

Trade and Export enquiries invited.
Rogers Developuents Co
Manufacturers of Precision Built Sound Equipment.
"Rodevco House," 116 Blackheath Road, Greenwich, London, S.E.10.

Telephone: TIDeway 1723

SCALAMP
ELECTROSTATIC VOLTMETER

Cat. No.
W.W. II310

This instrument introduces a completely new conception of electrostatic voltmeter. It is compact,

DIRECT READING ZERO CURRENT

DRAIN.
THREE SECONDS
PERIOD.
LAMP OPERATES FROM MAINS OR 4 VOLT BATTERY. BRIGHT SPOT-

AND-HAIRLINE INDICATOR.

PRICES
Super 5 Unit $£ 6.13 .3$
W. 15 /CS Unit $£ 16.0 .0$

Please write for illustrated leaflet.

W. G. PYE \& CO. LTD., GRANTA WORKS, CAMBRIDGE
COOD
For full particulars
OF ALL LOW LOSS CERAMICS SUITABLE FOR ELECTRONIC DEVELOPMENT
write to

TAYLOR TUNNICLIFF (REFRACTORIES)LTD

ALBION WORKS, LONGTON, STOKE.ON-TRENT
Telephone : Longton 33122
London Office: 125 HIGH HOLBORN, LONDON, W.C. 1 Tel: HOLBORN 1951/52

The illustration shows a Four Gang Radio Variable Condenser using our "FREQUELEX" Ceramic Rod for the Centre Rotating Spindle. This Rod is $7 \frac{11^{\prime \prime}}{}$ long $\times .437^{\prime \prime}$ diameter, centreless ground to within plus or minus .0005" Maximum camber allowance of $.002^{\prime \prime}$.
This is only one of many applications where Rods made to close limits are required.
We specialise in the manufacture of Ceramic Rods and Tubes of various sections in several classes of materials over wide dimensional ranges.
The Principal Materials Are:-
I. Porcelain for General Insulation
2. Frequelex for High-Frequency Insulation
3. Permalex and Templex for Capacitors

The degree of accuracy depends on the size of the Rod or Tube, but the standard degree of accuracy is outlined in the Inter Service Component Manufacturers' Council - Panel R Specification embodied in our Catalogue of Radio Frequency Ceramics, copy of which will be sent on request.
Large Rods up to $44^{\prime \prime}$ long and $11^{\prime \prime}$ square are used as supports for Tuning Coils, etc.
We shall be pleased to have your enquiries for all sizes of Tubes and Rods. Prompt deliveries can be given for most sizes.

Condenser manufactured by Messrs. Wingrove Eo Rogers Ltd.

CORONATION OFFER!

The coupon below will

 save you MONEYLet International Correspondence Schools perfect your knowledge of radio and \mathbf{T} / \mathbf{V}. To mark the Coronation. I.C.S. offer their Standard Home Study Courses at specially reduced fees, for a limited period only. These include :-
RADIO ENGINEERING, RADIO SERVICE ENGINEERING RADAR, ELEMENTARY ELECTRONICS, ADVANCED SHORT WAVE RADIO RADIO T/V TECHNOLOGY and training for the following examinationsbil.r.E. P.M.G. CERTIFICATES FOR WIRELESS OPERATORS C. \& G. TELECOMMUNICATIONS . C. \& G. radio servicing cert. (r.t.e.b.) . C. \& G. RADIO AMATEURS. etc., etc.
But ACT NOW-Don't miss this chance of obtaining an I.C.S. training at reduced fees. Fill in the coupon, stating the subject in which you are interested, and POST TODAY!

```
Dept. 223C, I.C.S., 7I, Kingsway. W.C. 2
```

INTERNATIONAL CORRESPONDENCE SCHOOLS
Dept. 223C, International Bldgs.; Kingsway, London, W.C.2.
I am interested in your Coronation offer.
Please send FREE Book on
 (BLOCK LETTERS, PLEASE)
Address
I

SINCE 1945 I.C.S HAVE TRAINED 150,000 AMBITIOUS MEN

FOR THE B.S.R. MONARCH AND

 GU4A REGENT Gramophone UnitsAND FOR

SPARES and STYLI PORTABLE RECORD PLAYER
CABINETS from 63-2-0 ($\begin{gathered}\text { purchase } \mathrm{Pax} \text {) }\end{gathered}$ suitable for the above

N. MIERS

6 CO. LTD

115 Gower Street, London, W.C. 1 .
Phone: EUSton 7515. Grams: Miersco, Westcent.

* We acknowledge with thanks the permission to reproduce the above report which is an extract from the lonuory issue of the Society's privote journa) All these models are stocked by the leading dealers, but in case of difficulty please order direct from us. We invite you to write for further details of any unit. Remember we can give you outlined dimensional drawing, of reflex chambers for all Speakers mentioned

MODERN RADIOGRAMS

by the leading makers are fitted with

 Garrard Record Playing Units
THE NEW GARRARD R.C.75A AUTOMATIC RECORD CHANGER

which automatically plays ten r2in., roin. or 7 in . records at either 78,45 or $33 \frac{1}{3}$ R.P.M. is also available for fitting to existing single speed record playing instruments.
It is complete with full instructions and all necessary fittings.
Your nearest dealer will be pleased to give you full details and explain how easy it is to replace your existing unit with a Garrard Precision Record Changer.

NOTE TO DEALERS-A special sales show stund which displays these unuts to your customers to the best advantage is available free of charge on application to the Swindon Factory. Stock models of all Garrard Products and the latest catalogue are also immediatcly available. Write for full particulars.

THE GARRARD ENGINEERING 6 MANUFACTURING CO. LTD.

for Automatic coolant regulation: Movement for pressure change: Packless gland to seal spindle in high vacua: Reservoir to accept liquid expansion: Dashpot or delay device: Barometric measurement or control: Pressurised couplings where vibration or movement is present: Dust seal to prevent ingress of dirt: Pressure reducing valves: Hydraulic transmission: Distance thermostatic control: Low torque flexible coupling: Pressure sealed rocking movement: Pressurised rotating shaft seals: Aircraft pressurised cabin control: Refrigeration expansion valves: Thermostatic Steam Traps: Pressure amplifiers: Differential pressure measurements: Thermostatic operation of louvre or damper.

Write for List No. N800-1
Br2

Drayton METAL BELLOWS

[^2]
COIL WINDING MACHINERY

We invite your enquiries for the Type $\mathrm{A} 1 / 1$ automatic machine, as illustrated. Also for the Type $\mathrm{H} / 1$ hand coil winder and Type AW/1 Armature Winding Head.

73 UXBRIDGE ROAD, EALING, LONDON, W. 5 Ealing 9096

First...

for all valve requirements
 Most designers of electronic equipment contact Ediswan first for all their valve requirements. They know that amongst the

 large range of valves made by Ediswan they are almost certain to find the specific type they need. They are certain also that any valve made by Ediswan can be relied upon for satisfactory service. Why don't you contact Ediswan for your valve requirements next time?
EDISWAN MAZDA

Valves and Television Tubes

New Arcolectric Signal Lamps

For Low Voltage or Mains

Illustrated are a few of our wide range of new signal or indicator lamps.
A new mains voltage lampholder, Cat. No. S.L. $88 / \mathrm{N}$, has been developed for use with the Arcolectric MES neon tube. Among the fealures of this design are easy lamp replacement, from front or rear of panel, and a built-in resistor.
The low voltage lampholders are designed for use with standard MES bulbs, Features are, easy single-hole fixing and pleasing appearance. Bulbs are accessible from front or back of panel. Insulation of all types will withstand a flash test in excess of 1,500 volts A.C.

Write for Catalogue No. 127

Arcolectric SWITEHESMLTE

S.L. 90

S.L. 86 .

CENTRALAVENUE, WEST MOLESEY, SURREY. TELEPHONE: MOLESEY 4336 (3 LINES)

High Value
INSULATION RESISTANCE METER

```
MODEL
RMI75-LZ
```


Self-contained, mains operated with stabilised voltage compensation and incorporating meter overload protection in the case of sample treakdown, this resistance meter is designed for intensive use in testing high values of insulation. Test pressure variable from $0-1,000$ V.D.C. Write for full specification.
$0-1,000 \quad$ V.D.C .

SELF-CONTAINED
STABILISED
OVERLOAD
PROTECTION
See our exhibits. Stand No. IA British Instrument Industries Exhibition, Olympia, London

BRITISH PHYSICAIDPATB ORATORIES LTD

and savings up to $\frac{4}{5}$ of the size and $\frac{5}{6}$ of the
weight in comparison with other storage batteries of similar capacities! The

Venner silver-zinc accumulator is ideal when exceptionally high rates of discharge are a necessary requirement. Write for Brochure VA/HI

VENNER ACCUMULATORS LTD.
Kingston By-Pass, New Malden, Surrey

Telephone: MALden 2442
 American type valves are amongst the finest obtainable in ether hemisphere.

More and more the world's governments set makers laboratories are standardizing on American types, valves which are obtainable anywhere in the world, valves which you can get from BRIMAR without expending dollars.

Efficient reliable robust BRIMAR VALVES are chosen for radio and electronic equipments in the fighting services and throughout industry. Their rugged dependability can contribute so much to your own products.

BRIMAR everywhere the Valve of Value

Dependable

BRIMAR
 $\underset{\substack{\text { BrITISH } \\ \text { Mãe }}}{\text { RADIO }}$ VALVES

Recrifion FREQUENCY SHIFT Hindie Toleprithter Litulis

Redifon design and supply Radio Teleprinter Links for any application. They are specially enginecred to handle the ever increasing volume of messages passed over aeronautical point-to-point networks, and to deal efficiently with the rapid and accurate message handling necessary for modern high speed aircraft. Many manual circuits throughout the world are now being converted to this method of operation.

Of the many forms of capacitors a vailable, one of the most puputar is the Tribular Paper, which fits most conveniently into any wiring assembly. In order to meet specilic requirements, Tubular Capacitors must be chosen with care by the designer and engineer, and anticipating their requirements Duhilier Tubutar Paper Capacitors are produced in a wide range covering all needs, for instance:-
A. Type 460 Tubular Paper Capacitors for all general normal condition requirements.
B. Metal-cased Tubular Paper Capacitors for services,
tropical and other ardnous conditions.
C. Metal Minicap, Tubular Paper Capacitors-an outstanding achievement in niniaturisation-to withstand severe tropical conditions and high altitudes.
D. Type 460B for general purposes A.C. working, designed to withstand the peculiar waveforms and peaks in vibrator power-packs and similar applications.
We shall be pleased to forward full technical details of these Capacitors upon request, and our technicians are always at your service for consultation with regard to their use.

DUBILIER

MAKERS OF THE WORLD'S FINEST CAPACITORS

FOR PRECISION

E.M.I.

 MINIATURE WAVEFORM MONITOR

Direct Time Measurement
to $\pm 2 \%$ F.S.D.
from 0.5μ.s to 40 ms Sync./Trig. Amplifier with Amplitude-FrequencyPhase Discrimination;

Direct Voltage Measurement A.C. $/$ D.C. to $\pm 2 \%$ F.S.D. from $\pm 20 \mathrm{mv}$ to $\pm 500 \mathrm{~V}$.

TYPE WM. 3 AN OSCILLOSCOPE by

E.M.I. FACTORIES

LTD.
HAYES, MIDDLESEX, ENGLAND

S-BAND TEST OSCILLATOR Type 0.223

A general purpose test oscillator developed in collaboration with R.R.D.E. and T.R.E. for use in the frequency range $2800-3600 \mathrm{Mc} / \mathrm{s}$ with an output in the order of 500 milliwatts.

The instrument incorporates a constant wattage power supply unit and square wave modulator, adjustable between 400 and 4000 cycles. It is fitted with crystal monitor and meter to provide continuous indication of power output. Supplied for standard $19^{\prime \prime}$ rack mounting, height $10 \frac{1}{2}$ ".

A small number of these instruments are available from stock. PRICE $£ 230$

FOR ALL REQUIREMENTS . . .

IN RADIO COMMUNICATIONS

WHERE RELIABILITY IN OPERATION
IS ESSENTIAL AND COMPACTNESS
DESIRABLE. We will quote per return air mail on receipt of details of requirements, and can give quick delivery.

Write now to :-

PANDA RADIO CO.,
 58, SCHOOL LANE, ROCHDALE, LANCS.

[^3]

PHIL-TROL SOLENOIDS

Phil-trol Solenoids are now being made in England.

The first of this very popular range of American solenoids or actuators will be the small types 41 and 42.

Samples are available NOW.
$6 v .-400 v$. A.C. and D.C. versions
WRITEFOR PAMPHLETS AND DETAILS:-
PHILLIPS CONTROL (great britan) LTD. 273, FARNBOROUGH ROAD, FARNBOROUGH, HANTS.

The NSF-Oak type "DL" 18-position rotary wafer switch has been developed in response to repeated demands for a high-grade component to meet the requirements of those circuit applications which necessitate increased switching facilities.

This new r8-position NSF-Oak switch embodies all the renowned characteristics of the standard NSF-Oak types, including the recently introduced " D" feature, which definitely eliminates the loosening of contacts, as a result of the application of excessive heat during soldering operations.

Positive indexing is ensured by the use of the NSF heavy-duty mechanism, and the assembly is available with or without panel and spindle seals, as desired.

The type " DL" switch is now in production, and may be specified for immediate fequirements.

Switch to N.S.F. for better switching

LONDON OFFICE: 9 Stratford Place, W.I. Phone: Mayfair 4234

N.S.F. LIMITED

KEIGHLEY - YORKS

Phone: Kelighley $4221 / 5$
Grams: ENESEF, Keighley

MAINS TRANSFORMERS

FULLY INTERLEAVED

SCREENED AND IMPREGNATED. ALL GUARANTEED. ALL PRIMARIES ARE 200/250 v. Half Shrouded.
HSM63 (Midget). Output $250-0-250 \mathrm{v} .60 \mathrm{~m} / \mathrm{a} ., 6.3 \mathrm{v}$. at 3 amps ., 5 v . at 22 amps.
HS63. Output $250-0-250 \mathrm{v} .60 \mathrm{~m} / \mathrm{a}, 6.3 \mathrm{v}$. at 3 amps., 5 v . at 2 amps.
HS40. Windings as above. 4 v. at 4 amps., 4 v. at 2 amps...... Output
HS2. $250-0-250 \mathrm{v}, 80 \mathrm{~m} / \mathrm{a}$.
HS3. $350-0-350$ v. $80 \mathrm{~m} / \mathrm{a}, 19 / \mathrm{HS} 30$, $300-0-300$ v. $80 \mathrm{~m} / \mathrm{a}$. HS2X. 250-0-250 v. $100 \mathrm{~m} / \mathrm{a}$, , 21/w. HS75. 275-0-275 v. 100 HS30X. $300-0-300 \mathrm{v}, 100 \mathrm{~m} / \mathrm{a} .21 / \mathrm{H}$. HS X. $350-0-350 \mathrm{v}$ $100 \mathrm{~m} / \mathrm{a}$.

Fully Shrouded.

FSM63 (Midget). Output $250-0-250$ v. $60 \mathrm{~m} / \mathrm{a} ., 6.3 \mathrm{v}$. at 3 amps., 5 v. 2 amps Output
FS2. $250-0-250$ v. $80 \mathrm{~m} / \mathrm{a}$.
FS30. $300-0-300$ v. $80 \mathrm{~m} / \mathrm{a}$, , 21/-. FS3. $350-0-350 \mathrm{v} .80 \mathrm{~m} / \mathrm{a} . .$.
FS2X. 250-0-250 v. $100 \mathrm{~m} / \mathrm{a}$. , $23 / \mathrm{l}$. F575. $275-0-275 \mathrm{v} .100$
FS30X. $300-0-300 \mathrm{v} .100 \mathrm{~m} / \mathrm{a}$., 23/-. FS3X. $350-0-350 \mathrm{v} .100$
m/a. above have $6.34-0 \mathrm{v}$. at 4 amps., $5-4-0 \mathrm{v}$. at 2 amps.
All the above have $6.34-0 \mathrm{v}$. at $4 \mathrm{amps} ., 5-4-0 \mathrm{v}$. at 2 amps.
FS43. Output $425.0-425 \mathrm{v} .200 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .4 \mathrm{amps}$. C.T. 6.3
FS43. Output $425-0-425 \mathrm{v} .200 \mathrm{~m} / \mathrm{a} ., 6.3 \mathrm{v} .4 \mathrm{amps} .$, C.T. 6.3 v . 4 amps., C.T. 5 v. 3 amps. Fully shrouded
Fs50. Output $450-0.450 \mathrm{v} .250 \mathrm{~m} / \mathrm{a} ., 6.3 \mathrm{v} .2$ amps., C.T. 6.3 v . 4 amps., C.T. 5 v. 3 amps. Fully shrouded
F30X. Output 300-0-300 v. $80 \mathrm{~m} / \mathrm{a} ., 6.3 \mathrm{v} .7$ amps., 5 v .2 amps. Framed. Flying leads
F35X. Output $350-0-350 \mathrm{v} .250 \mathrm{~m} / \mathrm{a}, 6.3 \mathrm{v} .6$ amps., 4 v .8 amps., 4 v .3 amps.. 0-2-6.3 v. 2 amps. Fully shrouded.
FSI60X. Output $350-0-350 \mathrm{v}$. $160 \mathrm{~m} / \mathrm{a}, 6.3 \mathrm{v} 6$ amps., 6.3 v 3 amps. 5 v. 3 amps. Fully shrouded
FS43X. Outpur $425-0-425$ v. $250 \mathrm{~m} / \mathrm{a} ., 6.3 \mathrm{v} .6$ amps., 6.3 v .
6 amps., 5 v. 3 amps. Fully shrouded

HS6. Output $250-0-250 \mathrm{v} .100 \mathrm{~m} / \mathrm{a}, 6.3 \mathrm{v} .6 \mathrm{amps} ., \mathrm{C} . \mathrm{T} .5 \mathrm{v}$. | 3 amps. For receiver R1 |
| :--- |
| HS150. Output $350-0-350 \mathrm{v} .150 \mathrm{~m} / \mathrm{a}, 6.3 \mathrm{v} .3 \mathrm{amps} ., \mathrm{C} . \mathrm{T}$. |

3 amps. Half shrouded ..
F36. Output $250-0-250 \mathrm{v} .100 \mathrm{~m} / \mathrm{a} ., 6.3 \mathrm{v} .6 \mathrm{amps} .$, C.T. 5 v .

FS120. Output $350-0-350 \mathrm{v} .120 \mathrm{~m} / \mathrm{a}, 6.3 \mathrm{v} .2 \mathrm{amps} .$, C.T. 6.3 v .
$2 \mathrm{amps} ., \mathrm{C} . \mathrm{T} .5 \mathrm{v} .3 \mathrm{amps}$. Fully shrouded
 3 amps. Fully shrouded
PRI/I. Output 230 v . at $30 \mathrm{~m} / \mathrm{a} ., 6.3 \mathrm{v}$. at $\mathrm{I} .5 / 2 \mathrm{amps}$.
FSIS0. $350-0-350$ v. $150 \mathrm{~m} / \mathrm{a}, 6.3$ v. $4 \mathrm{amps} ., 5 \mathrm{v} .3 \mathrm{amps}$
FSI50X. Output $350-0-350 \mathrm{v}$. at $150 \mathrm{~m} / \mathrm{a} ., 6.3 \mathrm{v}$. at 2 amps ., C.T. 6.3 v. at 2 amps., C.T. 5 v. at 3 amps. Fully shrouded. The above have inputs of $200 / 250 \mathrm{v}$.

OUTPUT TRANSFORMERS

MOPI. Ratios, $26,46,56,66,90,120-150 \mathrm{~m} / \mathrm{a}$. max. current, C.T. for Q.P.P. Class B, etc. Secondary $2 / 4$ ohms. Top panel and clamped, each
Opl0. $10 / 15$ watts output. 20 ratios on Full and Half Primary OP30. 30 watts output, 20 ratios on Full and Half Primary.
Williamson's O.P. Transformer to Author's specification.. Chokes for Williamson's Amplifier. 30 H . at $20 \mathrm{~m} / \mathrm{a}$. 10 H. at $150 \mathrm{~m} / \mathrm{a}$.

FOR FAULTY C.R. TUBES.

Special very low capacity secondary winding Transformer for Heater of Cathode shorts, restores picture after above failure.
Standard Types. $2 \mathrm{v}, 4 \mathrm{v}, 6.3 \mathrm{v}$, at 2 amps . Primary 200/250v.
$\begin{array}{lll}\text { each } & 29 / 6 \\ 10.8 \mathrm{v} . \text { at } 0.3 \text { amps. for G.E.C. tubes. Primary } 200 / 250 \text { v., each } & 29 / 6\end{array}$ Any other voltages quoted for, but please state current as well as
voltage. Unit. 2,500 v. at $5 \mathrm{~m} / \mathrm{a}$, 2-0-2 v. at $1.1 \mathrm{amp}, 2-0-2 \mathrm{v}$, at

Quotations, etc,-stamped addressed envelope, please.
C.W.O. (add $1 / 6$ in \mathcal{E} for carriage)

Trade and also export enquirics invited.
H. ASHWORTH (Dept. WW), 676, Gt. Horton Road, Bradford, Yorks.

towards periefiour-

Are you attaining the finest reproduction from your L.P. recordings ?
Make sure to be "in the groove" with a Lowther Moving Coil Pick-up in order to obtain supreme satisfaction.
Lowther Moving Coil Pick-up with sapphire stylus (L.P.) £7 7 0
Tungsten Carbide Standard £7 70
Purchase Tax £2 811
Ditto, with diamond stylus £16 10 0
Purchase Tax £5 9 9
Full particulars upon request.
THE LOWTHER MANUFACTURING CO.
Lowther House, St. Mark's Road, Bromley, Kent.

RAV. 5225.

made to measure . . .

The man who knows exactly the state of his insulation at any time-is wise.
But one who uses a "Record" Insulation Test Set is wisest. It is made to measureACCURATELY, by those who were pioneers in this field and who have kept ahead.

THE REGORD ELEGTRICAL CO LTD

BROADHEATH - ALTRINCHAM - CHESHIRE
Phone : Altrincham 3221/2/3/4 Cables and Grams: "Cirscale" Altrincham London Office: 28 Victoria Street, S.W. 1

Phone: Abbey 5148 \& 2783
Grams: "Cirscale" Sowest, London.
Cables: "Cirscale" London

Outrtanding Performance

With the

Because of improved importing faclities and larger quathties bought, we are now able to offer the farmous RONETTE Pick-Up at extremely low inclusire prices. Tinis Pick-Up is not only one of the lightest weight Plek-Upe on the market but has an extremely bigh fidelity reproduction. All models available from stoch. Order now.
RONETTE Miniweight Standard Pick-Up complete with 2 laterchangeable headi for standard or long playing records'
As above, with one head only to cholce
63. 9. 6
62. 7. 0
\&1. 2. 6
Long playing or standard head only
R ONETTE Miniweight Piek-Up with frequency reaponse up to 14,000 cycles, complete with 2 intcrchangeable heads for long playing and standard records

As above, with one head only to cholce
€3. 16. 3
62. 9. 9

E1. 6. 6

A Professional

TAPE RECORDER for only 32 gns!

Come and hear the BURGOYNE recorder. H.P. terms available. £11/4/- deposlt and 12 monthly paymenta of 42/9. FREE DELIVERY LONDON AREA.

Sole distributors for
BURGOYNE
MAGNETIG REGORDING
HEADS RECORD/PLAYBACK OR ERASE actual size $\quad 37 / 6$ each

With the

RECORD/PLAYBACK

AMPLIFIER TYPE A. 6
As used in the BURGOYNE RECORDER

Special features inelude.
Special features include:
Bass and treble controls for cut and boost operative on both record and playback. Separate radio and microphone inputs.
Visual indication of record or playback position.
Extra switching for complete demagnetisation of heads when changing from record to playback.
Ready to use $\quad £ \|!15,0 \quad$ Carriage Paid
B.P. Terms 78/- Deposit, 12 Monthly Payments of 16/5.

The Radio Centre invites you . . At one time we were leading (aovern ment Surplus Stockists-a fact which will be to your adyantage if Fou call at our Showrooms. : We have left, niscellaneous quantities of surplus electronic equipnent in very great rariety, We have left, miscellaneous quantities of surplus electronic equipment in very great variety, Do not fail to pay us a visit. A show room is being allotted to the display of this material which can be ingpected at your lelsure.

A few left only. We are forturate in stlll being able to offer certaln B.S.R. equip-
mezts, which are no longer generally available, fas follows:
MU14 3 -qpeed Motor Unit for A.O. Mains

- 8121 Mobpeed Motor Uut for A.C. Mains
- SR2 Motors

HIGH FIDELITY
 CRYSTAL MICROPHONE

RONETTE High Fidelity Crystal Microphone - now well eatablished. This fine Crystal Microphone is particularly recommended for magnetic tape recording. Fitted with RONETTE DX12 ingert, with frequency response between 30-13,000 cycles with output at 1,000 cycles 1,3 MV/Microbar. Microphone insert is vacuum sealed, precision ground and optically inspected, and is housed in a hlghly polished black plastic moulding with jong connecting lead. The mlerophone is fitted with an annealed, corrosion resistive alumlnium diaphragm.

Only 52/- post free

POSITIVELY the most EFFICIENT for H.T. SUPPLIES

Write in for further details. A copy of "THE ALL METAL WAY" can be obtained by sending $6 d$. in stamps to

Dept. W.W.7.

to radio and television receivers and without a doubt the most reliable. Constant development of Westinghouse rectifiers to produce units capable of meeting all demands in this particular field has resulted in a decrease in size while maintaining the same output. More recent designs have produced units to supersede those in current ranges of commercial and home constructed television receivers, and although physically they are of the same dimensions the current output has been considerably increased.
 Westinghouse brake \& signal co. ltd, 82 york way, king's cross, london, n. 1

"MAGNUM OPUS"

If you should have any doubts just what our NEW 1953 HOME CONSTRUCTOR'S HANDSOOK can mean to YOU then read what one delighted owner writes :*
". . . after careful perusal, amongst many others, I fecl sure your Handbook is truly the " magnum opus " for the Home Constructor. The mode of presentation of data, details, and circuits has been rendered without the usual forms of embellishment, and I still find humour in the penultimate paragraph of the introduction. Sincel want a 'Rolls-Royce 'I havedecided upon the Io Watt Quality Amplifier and RL 40 Feeder, using the Goodmans 12 in . speaker: This conclusion has been reached after receipt of many brochures. catalogues, etc., from many sources, famous and not so famous
You, too, wil! feel like this satisfied Client when you receive your copy! This book contains ALL of the following time-proved outfits YOU can build under our "Easy-as-A.B.C. "construction system:

- $3 \vee 3$ Band FEEDER 4V 3 Band FEEDER "Norm/HiFi/Gram" 5V 3 Band SUPERHET AC $5 V 3$ Band SUPERHET AC/DC - $6 V 3$ Band SUPERHET AC $6 v 3$ Band SUPERHET ACIDC 3V 2 Band "Local Station" HiFi FEEDER © FEEDER AMPLIFIER/POWER PACK MAGIC EYE UNIT SIGNAL TRACER - 5 Watt AMPLIFIER 10 watt AMPLIFIER SIGNAL GENERATOR, etc., etc., etc.
Apart from DETAILS for construction there are LARGE blueprint circuits, COMPLETE parts lists and technical descriptions, of these famous circuits, also Set Building Hints, Servicing Hints, Facts and Formu!ae, Resistance Colour Code, Symbols, Data, etc., etc. AND our current Catalogue, ALL FOR HALF-ACROWN!
Printed on glossy art paper this famous publication contains many advances over previous issues; is profusely illistrated throughout its 46 paree and should detinitely be in every radio mall's len. DON'T DELAY, SEND FOR YOUR COPY TO-DAY

RODING LABORATORIES
 (Dept. W7), HURN AIRPORT, GHRISTCHURCH, HANTS.

THE TRANSFORMER SUPPLY CO.

offer
 HIGH GRADE TRANSFORMERS

 at competitive pricesAll fully shrouded (except E.H.T. types), of interleaved construction and impregnated to ensure long life. Accuracy and insulation conform to the best electronic engineering practice.

Pri: 210,230,250v. *230v. only

Cat. No.
Price
T.S. $1260 / 0 / 260 \mathrm{v} .65 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .2 .5 \mathrm{a} ., 5 \mathrm{v} .2 \mathrm{a}$. 18/6
T.S. 2 350/0/350v. $120 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .4 \mathrm{a} ., 5 \mathrm{v} .2 \mathrm{a}$. $30 /-$
T.S. 3 350/0/350v. $150 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .4 \mathrm{a}$, , 5v. 2a. 35/-
T.S. $4425 / 0 / 425 \mathrm{v} .200 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .4 \mathrm{a}, 6.3 \mathrm{v} .2 .5 \mathrm{a} ., 5 \mathrm{v} .3 \mathrm{a}$. $\quad 47 / 6$
T.S. 5 425/0/425v. $250 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .4 \mathrm{a} ., 6.3 \mathrm{v} .4 \mathrm{a} ., 5 \mathrm{v} .3 \mathrm{a} . \quad 52 / 6$
T.S. 6 350/0/350v. $250 \mathrm{~m} / \mathrm{a} .6 .3 \mathrm{v} .8 \mathrm{a}$, , 0-2-6v. 2a., 5v. 3a. 62/6
T.S. 27 *1750v. $5 \mathrm{~m} / \mathrm{a}$. R.M.S. $0-2-4 \mathrm{v} .1 .5 \mathrm{a}$. (Ins. 2500v.)
D.C. $0-2-4 \mathrm{v} .1 .5 \mathrm{a}$. (ins. 2500v.) D.C............ $37 / 6$
$\begin{array}{cc}\text { T.S. } 282500 \mathrm{v} . ~ & 5 \mathrm{~m} / \mathrm{a} \text { R.M.S. 0-2-4v. I.5a. (Ins. 3500v.) } \\ \text { D.C. } 0-2-4 \mathrm{v} .1 .5 \mathrm{a} . \\ \text { (Ins. 3500v.) D.C. } \\ 50 /-\end{array}$
T.S. 29 4000v. $5 \mathrm{~m} / \mathrm{a}$. R.M.S. 0-2-4v. 2a. (Ins. 6000 v .) D.C. 70/-

Cash with order or C.O.D.
70, CHEPSTOW ROAD, LONDON, W. 2

An effective survey on site will prove a sound investment in the planning of all radio telephone systems and ensure that the required system performance is obtained at the most economic cost to the Administration. Such surveys, taking into account all relevant propagational and meteorological data, ensure that the most suitable route is selected to meet local conditions and in particular that all stations, both terminal and repeater, are sited to the best advantage . . .

new cases...

racks and desks bave been added to the comprebensive range of fabricated metal cabinets designed and made by Imbofs the leading sbeet metal specialists. Allibough these

and the established range...

 are still produced with the same bigh standard as before, ever increasing demands and stepped up production has made it possible for these standard stock items to actually
cost less.

ALFRED IMHOFLIMITED, II2-II6, NEW OXFORD ST., LONDON, W.C.I. MUSEUM 7878

REDUCE YOUR PRESS TOOL COSTS

THE HUKTON UNIVERSAL BOLSTER OUTFIT FOR SHEET METAL PIERCING AND BLaNKING ON FIY PRESSES

Bolster Frame with 2 adjustable gauges and insertable steel

inexpensive standardised Punches and
 -when required.
Standardised Tools also available at short notice for Square, Oblong and other shapes, Louvre Forming (up to Bin. Iong), Corner Notching. Corner Radiusing, Angle Iron Notching and Piercing, etc.
Get the Outfit now-Buy Punches, Dies and Tools as you neef them Descriptive brochure and prices on request.

HUNTON LIMITED

Phoenix Works, 114-116, Euston Road, London, N.W. 1 Telephone: EUSton 1477-8-9. Telegrams: Untonexh, London

TEGHNIGAL SALES OFFICE,
299 NEW KING'S ROAD,
LONDON, S.W.6. Tel. : RENown 1601
HALIAM, SIEIGH \& CHESTON IT: WIDNEY works bormincian - 4

a new INDEPENDENT SIDEBAND RECEIVER
 ... developed to British Post Office Specification

T\checkmark His new Independent Sideband Receiver type GFR 552 is designed for operation on long-distance, point-to-point, short-wave radio links forming part of the international trunk network. On independent sideband working, the GFR 552 provides facilities for the reception of two single sideband signals, each $6 \mathrm{kc} / \mathrm{s}$ wide, one above and one below the frequency of a reduced-level pilot carrier. Each sideband will accommodate either two $3 \mathrm{kc} / \mathrm{s}$ wide telephony channels, or several voice frequency telegraph channels. The GFR 552 may also be used for reception of single sideband or double sideband transmission. In the case of the second application this receiver offers two advantages: firstly, the absence of non-linear distortion which occurs in normal D.S.B. receivers when signals are subjected to selective fading conditions; and, secondly, the ability to select upper or lower sideband for demodulation, dependent upon which is freer from adjacent channel interference. The circuit and chassis layout of the GFR 552 closely follows that of the Mullard Receiver GFR 551, which was based on a British Post Office design (Receiver, Radio No. 22).
Special features of the GFR 552 include a high order of oscillator stability and freedom from cross-modulation through which cross-talk between channels or intermodulation between wanted and unwanted signals might occur. A brief technical summary is given below. More detailed information supplied on request.
FREQUENCY RANGE-4-30 mc / s.
NOISE FACTOR-better than $7 d b$ over the band.
SIGNAL TO NOISE RATIO- 25 db for 4 microvolts peak sideband input over the band.
SELECTIVITY-The response is flat within 2 db for sideband frequencies between $100 \mathrm{c} / \mathrm{s}$ and $6000 \mathrm{c} / \mathrm{s}$. At $10 \mathrm{kc} / \mathrm{s}$ from the carrier frequency the response is -60 db relative to the pass band. A.F.C.-The A.F.C. system operates effectively with a pilot carrier level of -26 db relative to 1 microvolt (which corresponds to a peak sideband level of I microvolt and a signal to noise ratio of 15 db).
NON-LINEAR DISTORTION—Third order intermodulation products which might result in cross talk between sidebands do not exceed -50 db relative to the sideband levels.
OUTPUT-Variable up to 14 db relative to 1 mW into 600 ohms.

CITY SALE \& EXCHANGE

 LIMITED

 THE HIGH FIDELITY SPECIALISTS}

 THE HIGH FIDELITY SPECIALISTS
} 90-94, Fleet Street, London, E.C.4.

Phone: Central 9391/2
Offer the following from their large stock of radio equipment :-

AMPLIFIERS

Leak TL/12 Point One with Vari-slope pre-amplifier 39 gns. Acoustical QUAD with separate pre-amplifier £35. R.D. Baby Mark II $£ 23$.

TAPE

RECORDERS

Grundig 2-speed "Reporter" 80 gns. Soundmirror table and portable models, complete with microphone, shop soiled only 57 gns. Emicorda hi fi model, walnut case 90 gns . Microphone $6 \frac{1}{2}$ gns. extra.

TUNERS

Lowther DT4 7valve straight/ superhet Tuner (as illustrated) £37/6/3. Lowther LES 5 -valve 3 waves £23/15/9. FM/AM 5-valve Tuner£22.Chapman ST4£16/20. Leak V/S £35/6/0.
SPEAKERS. Decca corner horn $£ 28$ 9/8. Wharfedale $W / 15$ and Super 5 in corner sandfilled assembly £58. Salex 10 in. reflex with Wharfedale unit $£ 1410 / 0$. R.A. Prestige witk: 10 in. unit $£ 20 / 17 / 6$. R.D. Junior cabinet only, £20. R.D. Minor speaker baffle £8/5/0. SPEAKER UNITS. Goodmans Axiom 150 Mark II $£ 13 / 11 / 5$. Axiom $101 \quad £ 6 / 12 / 1$. Axiom 102 £9/18/2. Wharfedale Super 5 £6/13/3. Super 8 £5/13/3. Super 8 CS/AL £6/13/3. Golden 10 £7/13/3. Golden 10 CSB $£ 86 / 7$. W. $12 \mathrm{c} / \mathrm{S} £ 12 / 19 / 10$ W. 15 C/S £16.

PART EXCHANGE-OUR SPECIALITY
 Send details of your present equipment

RECORD PLAYERS

Decca 33A 5 gns. Decca 3-speed $347 / \mathrm{C}$ or M $£ 18 / 8 / 6$, or in walnut case $£ 20 / 7 / 8$. Convertogram 3-speed nonauto $£ 11 / 15 / 0$. Philips "Disc-Jockey" £10/13/8. Plus-a-gram 3-speed auto £18/10/0.

REGORD

REPRODUCERS

Trixette 3 -speed auto, as new 25 gns. Collaro 3speed auto 25 gns. Deccalian 78 auto, perfect order 19 gns. Plus-a-gram Dansette 3 -speed auto $£ 32$.

Hire Purchase terms can be arranged on all new apparatus over $£ 10$-one-third deposit, and the balance over 6,12 or 18 months. Write for order forms.

ASK ARTHURS FIRST

Send your enquiries for all Radio and Electriosl

* NEW VALVES
goods, especislly those in sbort sapply.
We have probably the largest variety of valves in the country. Let us know your requirements.
AVO METERS IN STOCK

VALVE MANUALS $\begin{array}{llll}\text { Mullard } & \ldots & 5 & 5 \\ \text { Osram } & 0\end{array}$ Brimar Nos. 4 \& $5 \begin{aligned} & 5 \\ & \text { each. }\end{aligned}$ Mazda, Part 2 Rulve Replacement Guide ... 2 Amateurs' Glide to Valve Selection by Mullard 6d. each extra

Leak Point I Amplifiers E28 $7 \quad 0$
VALVEMANUALS

Postage 60.
GRAY HOUSE, 150-152 CHARING CROSS ROAD, LONDON, W.C. 2
TEMple Bor $5833 / 4$ and 4765 .

First Grade Quality - British and American Make - No Dollar Expenditure Involved

LARGE QUANTITIES \& GREAT VARIETIES

ELECTRONIC ENGINEER AND STOCKIST
Office and Stores: 12a EIGHTON GROVE - LONDON - N. W.5 *

Telephones: $\left\{\begin{array}{l}G U L l i v e r ~ 6077 / 8 \text { (2 lines) } \\ H E N d o n ~\end{array}\right.$
Telegrams: $\left\{\begin{array}{l}\text { Overseas; "Shemanskee" Londion } \\ \text { Inland: "Shemanskee" Norwest London }\end{array}\right.$
PROBABLY THE LARGEST ACTUAL STOCKIST IN ENGLAND
WHOLESALE ANIDEXIOITTONLY

Air cooled, compound filled and oil immersed transformers for every requirement.

Further examples from our ranges manufactured to the most stringent specifications.

We offer you our experience and knowledge to meet your own high standards, utilising conventional design or ' C ' core types.

WILLESDEN TRANSFORMER CO. LTD. 2a, FRITHVILLE GARDENS SHEPHERDS BUSH, LONDON, W.I2.

Tel.: SHEpherds Bush 5819.

Microwave Test Gear

Metropolitan-Vickers Electrical Company announce a complete range of precision microwave test gear for use in 3 in . x $\frac{1}{2} \mathrm{in}$. waveguide over a band of wavelengths from 10 cm . to 11 cm .

1 PRECISION ATTENUATOR Type 501
2 MATCHED LOAD Type 506
3 OSCILLATOR Type 508
4 FIXED ATTENUATOR Type 519
5 SHORT CIRCUIT Type 510
6 DIRECTIONAL COUPLER Type 504

Other Metrovick microwave equipment includes variable attenuator type 502 , standing wave detector type 512 , wave meter type 517 , high power load type 515 , S \& X band spectrometer type 518.

Full technical details will
be sent on request.

METROPOLITAN-VICKERS ELECTRICAL CO. LTD., TRAFFORD PARK, MANCHESTER 17 Member of the A.E.I. group of companies

THIS IS THE "TELE-VIEWER"

5 CHANNEL TELEVISOR

A Design of a Complete 12 in . or 9 in .
SUPERHET T/V RECEIVER FOR THE HOME CONSTRUCTOR
This receiver has been developed after most careful research and affords a high standard of Television entertainment by producing a picture of really outstanding quality.
We confidently believe that not only have we achieved a T.V. Receiver that surpasses in efficiency any other designed for the home constructor, but that successful construction, even by the most inexperienced, is assured by the step by step wiring detail and diagrams provided, and at about half the cost of the nearest comparable commercial recciver.
Here are some of the features which combine to make this such a fine receiver

- The Superhet circuit easily tuned to any of the five channels, i.e. LONDON, SUTTON COLDFIELD, HOLME MOSS, WENVOE and KIRK-O-SHOTTS. (The extreme ease of tuning is accomplished by the provision of pre-aligned I.F.T's.)
- A lifelike, almost stereoscopic, picture quality made possible by the following factors
a. Excellent band width of I.F. circuits,
b. A really efficient video amplifier.
c. C.R.T. Grid modulated from low impedance source.
d. High E.H.T. voltage (approx. 10 kV .).

The picture brilliance is also much above the average and enables comfortable viewing with normal room lighting or daylight.

- FIRM picture "HOLD" circuits (Frame-Line) ensure a steady picture, free from bounce or flicker even under the most adverse conditions met with in "fringe" areas and excellent "interlace" ensures the absence of " liney effect."
- Picture linearity better than 5\% ! (Some commercial receivers are passed at 15%.)
- Negative feedback is used in the audio frequency circuits which provide $2 / 3$ watts of High Quality Sound.
- Entire receiver built on two chassis units, each measuring $14 \frac{1}{2}$ in. x $6 \frac{1}{2}$ in. $\times 3 \frac{1}{2} i n$.
- Rigid C.R.T, mounting enables entire receiver to be safely handled with tube in position.

- All pre-set controls are mounted on side of chassis enabling all adjustments to be carried out whilst facing the C.R. Tube. As no hire purchase terms are available the receiver can be bought in five separate stages (practical diagrams and circuits are provided tor each stage) thus enabling hire purchase interest rates to be avoided. The complete set of ASSEMBLY INSTRUCTIONS IS NOW AVAILABLE, price 5 - (refunded against first order). The instructions include really detailed PRACTICAL LAYOUTS, WIRING DATA AND COMPONENT PRICE LIST.
ALL COMPONENTS ARE AVAILABLE FOR INDIVIDUAL PUR. CHASE. A CABINET WILL ALSO BE AVAILABLE.

STERN RADIO LTD.

109 \& 115 , FLEET STREET, E.C. 4
Tel. : CENTRAL 5812-3-4.

WE PAY TOP PRICES

For American Surplus Electronic Equipment

 Any quantity or condition
LOOK AT THESE EXAMPLES

for equipment in good condition
SCR291, complete
Receiver R54/APR4 with all tuning units ... $\mathbf{f 1 3 5}$
Receiver BC348 (R model only) $£ 25$
Frequency Meter TS/I75 $£ 80$
TX/RX RTI8/ARCI, $£ 50$
Test Set TSI3 $£ 100$
Valves 723A/B ...
We pay similar Remarkable Prices for
Receivers APR1, APR4, APR5, ARC3, R5/ARN7, BC342, BC312, APN9, BCII47.
Frequency Meters, TSI74/U.
Test Sets T53, TSI3, TSI4, TS34, TS45, IEI9, TS59, TSI02, TSII8, TSI84.
Transmitters ART/3, TRCI, TCS6-12-13, ET4336
Synchronisers BCII48
Modulators BCII42
Indicator $\mathrm{BCII5I}$
And almost every American made unit even if not mentioned above.
Phone us immediately, transfer charge

ALTHAMRADIOCO.
 JERSEY HOUSE, JERSEY STREET, MANCHESTER, 4
 Tel. : CENtral 7834/5/6

Standard "VIEWMASTER" model as shown £13.0.0 With Full Length Doors 天14.0.0 Universal Model for all $16^{\prime \prime}$ tubes now in preparation. Carriage and Packing 15/- extra.
Fitted with shelf for easy mounting. These are NOT mass produced and dimensions can be altered to suit personal requiremencs.

OSCILLOSCOPE TYPE 723

HE OSCILLOSCOPE TYPE 723 is a general purpose instrument with a flat frequency response from D.C. to $5 \mathrm{Mc} / \mathrm{s}$. It utilises a vertical cathode ray tube with a 4 in . flat screen, which is viewed through a surface aluminised-mirror.

This form of construction has considerable advantages. The instrument which is only 8 in , deep, may be forward rack mounted on a 19in. rack, but when employed for bench use it takes up less room than a conventional oscilloscope. The screen is observable at a reasonable height from the bench without tilting, and an effective light shield is obtained without a projecting hood. The large front panel makes possible a clear and convenient layout of controls, and an Oscilloscope Camera Type 758 may be mounted permanently on the top of the instrument without interfering in any way with normal viewing.

[^4]

Full details of this or any other Airmec instrument will be forvarded gladly upon request.

Ainmec Linited

THE "WEYRAD" SIGNAL GENERATOR

At a low Price ONLY £8.10.0 RETAIL

NOTE THESE OUTSTANIDING FEATURES

- Coverage $100 \mathrm{kc} / \mathrm{s} .-70 \mathrm{mc} / \mathrm{s}$. (on fundamentals).
- Accuracy better than 1% on all ranges.
- Large, clearly calibrated scale.
- Modulated or unmodulated output.
- $500 \mathrm{c} / \mathrm{s}$. A.F. source.
- S.G.M.I-A.C. mains operation, double wound varnishimpregnated transformer, tapped 210/225/250 v.
- S.G.B.l-all dry battery operated.
- All components are by well-known manufacturers ensuring maximum reliability and efficiency.
- Both types are now in quantity production.
- Illustrated leaflet available on request.

Special Quotations for Trade छr Export Quantities.

WEYMOUTH RADIO MFG Co. LTD.
 CRESCENT STREET, WEYMOUTH, DORSET, ENGLAND.

CM. SGiOLARSIIPS TO THE VAUUE OF 3 OUOU

YOUNG MEN AGED 17-19 with G.C.E. and at least one year's study in Mathematics and Physics to Advanced level, have a wonderful opportunity to train for an interesting and well-paid career with the greatest Electronic Group in the Commonwealth.

ONCE A YEAR at least 24 Scholarships (to the value of $£ 3,000$) are awarded for a four-year course in Electronic Engineering. With this Scholarship and grants, students may become almost self-supporting while still under training. During the course the students' progress and welfare are the main consideration.

Write immediately for full details. Next course commences October 6th. Selected applicants will be required for a personal interview in late July or early August.

E.M.I. INSTITUTES
 (DEPT. 1270)
 10, PEMBRIDGE SQ., LONDON, W. 2

Tel. : BAYswater 5131/2

Associated with "him.v." MARCONIPHONE COLUMBIA ETC.
 Specialized Loudspeaker Enclosures No. 1 Type F.C.R.8.

Recommended parti cularly for use with the Axiom 101, 102, Super 8CS and Super 8CS/AL this cabinet is lagged with a special material, resulting in an in proved clarity rarely associated with thi type of enclosure.
Individually made, with gold expanded aluminium grill, this hand french polished case is available in Oak, Wainut or Mahogany finish. Size 27in. high x 17 in . wide x 10 in . deep. (Carriage and packing extra) 9 Gns.

Visit our showerooms to hear the F.C.R. 8 and other modern B.K. housings for 8 in., $10 \mathrm{in} ., 12 \mathrm{in}$. and 15 in . units and a voide range of high fidelity equipment which our staff will gladly demonstrate.

B. K. PARTNERS LTD.

229, REGENT STREET, LONDON, W.I.

The

"'Musicmaster"

 Tape RecorderMODEL 2B

British made by British

 craftsmen, this Recorder represents an outstanding achievement in the field of tape recordersT.MUSICMASTER Tape Recorder is a moderately priced machine of outstanding performance. A Two-Speed tape mechanism is employed and the reproduction is completely free from all forms of "wow" and "flutter." The major features of the machine are listed on the right.

DESIONED FOR CRITICS

BYCRITICAL DESIONERS
MANUFACTURERS OF FIRST GRADE ELECTRONIC EQUIPMENT

Two tape speeds.
Instant speed-change at turn of switch.
Perfectly silent mechanism.
Single slot loading.
Fast forward and rewind without tape handlings.
Rewind and forward in 50 seconds.
Twin track recordings.
Contacts for external stop and start.
Electromagnetic braking giving freedom from mechanical wear.
Complete freedom from " wow " and " flutter."
Positive spool locks.
Super high fidelity heads.
Simplicity of control.
Six-valve negative feedback record/playback amplifier.
Radio and Microphone inputs.
Built-in monitor loudspeaker for playback.
Gramophone input with special lead.
Monitoring facilities for listening to material being recorded.
Very high microphone recording sensitivity.
"Magic-eye" Recording level indicator.
Provision for headphone playback.

\rightarrow Carriage forward
 Special transit case $£ 2$
 (Refunded on return)

Complete with MICROPHONE, TAKE-UP SPOOL and one reel of 'FERROVOICE' TAPE
\star Further details available on receipt of stamped, addressed envelope.

MUSICMASTER TWO-SPEED TAPE dESK E18.18.0 Available separately. Delivery seven days

Carriage forward.

Build Your Own Tape Recorder

ALL PARTS PRECISION ENGINEERED SEND S.A.E. FOR SPECIAL PARTS LIST
LINCOLN SPOOL ADAPTORS each 59
LINCOLN OSCILLATOR COILS, completely
enclosed in Neosid Former. $45 \mathrm{Kc} / \mathrm{s}$... \ldots.... each 126
LINCOLN OSCILLATOR UNIT, complete with
68W6 valve each 50 0

eight ranges. PRICE	" Q-MAX" MODELG.D.O.I.A GRID DIP OSCILLATOR is an idealinstrument for the determination of tuned circuit resonant frequency, tuning transmitters without application of power, for the determination of coil mutual and stray inductances and both fixed and stray capacitances. Covers 1.5 to $300 \mathrm{Mc} / \mathrm{s}$ in 12 Gis. Complete.	
OUR NEW CAT	OGUE IS AVAI	BLE, 6d., POST

25 HIGH HOLBORN, LONDON, W.C. 1
TEL.: HOLBORN 6231

PARKER'S SMEET METAL FOLIDING MACIIINE

Heary Vice Model. Cap. acity 18 gange M.S.x2ft. wide. Loose Attachments for Radio Chassia making Weight 22 Jbs. Price 42/6 Attachments $1 / 6$ per $1 t$. Carriage $4 /-$, with attach mente 5/6. Also Parker'a Four in one Revolving Drill Vice.
Comprialing : — Opright Vee. Inclinable Vee. Right Angle. Flat Side. Admits Btock of 3m. dia. Weight 12 lb . Prioe 42/6. Carriage 2/6,
Machines gnarantesd.
Sond for detalls.

Bxpoiy

 mitting Exporters of all types of Radio Receivg and TransSurplus Special Purpose Tubes. Over 900 types in large quantities, available Ex-Stock, Contractors to British Commonwealth and Foreign Governments for Army, Navy, and Air Forces, Post Offices, Civil Air Lines, etc. Ask for Export List.

1AS
1ASGT
125 GT
$1 \mathrm{AF} / \mathrm{G}$
1 A 9 GT 1824
1056
$1056 T$
105 1D5
1D8GT 1E7G $1 G 5 G$
$166 G T$ $1 \mathrm{G6GT}$
185 G
$1 \mathrm{H} 5 / \mathrm{GT}$ 1IA
1LA 6
1LC6 1LC6
1LD
ILH
IL
1 N5/G
1N5GT
1P5GT1P5GT
$185 G T 1294$$184 / 1294$
185
185
174
105
2043
245 SOME

50C5
50CDB/G
$50 \mathrm{L6GT}$
50 Y 6 GT
53 A
53 KU
715 B
71
717 A
721 A
723 B
724 B
7725 A

[^5]
MOTEK K3 AND K4 TAPE UNITS

太 Sturdy Push Button Controls.

* Electronic braking system giving smooth and efficient braking at the touch of a button (self-contained power unit).
* 3 Collaro Motors.
\star Rewind and fast forward without handling tape and in 1 min.
\star Essential parts machined to a very high degree of accuracy to ensure negligible wow.
* Half track high impedance record and erase heads. At tape speed $7 \frac{1}{2}$ in. per sec.-I hour's playing.
* Response $50-10,000 \mathrm{c} / \mathrm{s}$.
* Pressure pads and roller controlled by single lever.
t Size of unit $16 \frac{1}{2} \times 11 \frac{1}{2} \times 4 i n$.
\star Most visible Unit Fittings chromium plated.
\star Voltage A.C. Mains $200 / 250$ volts.
\star Each unit is supplied with full instructions and circuit diagram for suitable amplifier and is fully guaranteed.
\star Packed in rigid cardboard carton.
The Motek K3 and K4 units are beautifully finished and their operation and appearance will satisfy the most critical.

Also Available : Motek Tape Amplifier. Motek Oscillator Coils.

Motek Record and Erase Heads. Telephone Adaptors, Etc.

Price: K3

Employing " red " code R/Play Head (1,000 ohms at 1 Kc .).

K4

Employing "yellow" code R/Play Head (2,300 ohms at I Kc.).

16 $\frac{1}{2}$ Guineas

17 Guineas

From your local dealer or in case of difficulty write to :-
MODERN TECHNIQUES 138-144 Petherton Road, London, N.5. Tel.: Canonbury 5896

SIGNAL GENERATOR TYPE 10. $100 \mathrm{Kc} / \mathrm{s}-100 \mathrm{Mc} / \mathrm{s}$ Price E7. 10 . 0
The accuracy. reliability and comprehensive specification, are some of the reasons why the TYPE 10 has achieved such outstanding success.

- $100 \mathrm{Kc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$ - Modulated or unmodulated carrier Direct calibration Adjustable 400 c.p.s., AF signal Stable RF oscillator Large, easily read scale AC mains operation.
New instruments now available include the HOMELAB CHECKTEST price $37 / 6 \mathrm{~d}$. and a range of accurately calibrated variable condensers, $100 \mathrm{pf}, 500 \mathrm{pf}$, and 1000 pf , price $42 /$ each.
Obtainable only direct from the manufacturers. Send for full technical details or call at address below.

Overseas enquiries invited.
HOMELAB INSTRUMENTS LTD., 615-617, HIGH ROAD, LEYTON, LONDON, E.IO Telephone: LEY 5651

THE WORLD'S GREATEST BOOKSHOP

All nezy Books available on day of publication. Secondhand and rare Books on every subject. Stock of over three million volumes.

Subscriptions taken for magazines.
119-125 CHARING CROSS ROAD LONDON W.C. 2 Geryard s 660 (I6 lines) \star Open 9-6 (Tburs. 9-7) Nearest Scation : Tottenham Court Road

A MINIATURE MAGNETIC LIGHTWEIGHT EARPHONE

The new Amplivox E. 4 Earphone has been primarily developed for use with office dictating machines, industrial equipments and hearing aids where a highly sensitive, lightweight, miniature receiver lightweight
is needed. is needed.
Available in D.C. resistances $2-2000$ ohms; frequency 100 4000 c.p.s.; diameter $.835^{\prime \prime}$: depth $420^{\prime \prime}$; weight $\frac{1}{3}$ oz.

－if you look for BIG RESULTS

We＇re not kidding－a vast improvement arises from the use of OSMOR＂Q＂Range Coils．No wonder our customers are enthusiastic！They tell us these ＂mighty marvels in miniature＂are super selective and sensitive to a degree they never dreamed possible．And we guarantee them－they＇re the outcome of patient scientific research plus the highest technical ability． Note these＂plus＂＇points that spell superior performance：－ \star Only lin．high．\star Packed in damp－proof con－ tainers．太 Variable iron－dust cores．丸 Fitted tags for easy connection \star Low loss Polystyrene formers．

COILPACKS．Now at new lower prices！A full range is available for Superher and T．R．F．Mains or Batrery．Size only 1 lin． high $\times 3 \frac{1}{2}$ in．wide $\times 2$ itin．Ideal for the reliable construction of new sets，also for conversion of the 21 RECEIVER，TR 1196，TYPE circuits，etc．Fully descriptive leaflets available．

Wian 0.5 FDD

EACH

A spotlight on just one of the range of OSMOIR ＂Q＂coils． H．F．CHOKE Type Q．C．1． Frequency coverage $150 \mathrm{kc} / \mathrm{s}$ ．to $20 \mathrm{~m} / \mathrm{c}$ ． Iron－dust core and single－screw fixing． Prototype tested and ap－ proved by M．G．Scroggie， B．Sc．，M．I．E．E．Ideal as anode load in TRF re－ ceivers，for decoupling and general purpose．Price 4／－．

TWO for the Price of ONE！
The NEW IDSATMII

CHASSIS CUTTER

of entirely new design．Cuts two sizes of holes with any one reversible punch and die；and can be operated with a spanner or tommy－bar．Blanks easily removed．

${ }^{\text {Prov．}}$ Pal．

Type	Hole Sizes	Pr
1	lin．\times lifin．	19／6
2		18／9
3	Sin．$\times 1$ 考in．	22／6
4	$1{ }^{3} \mathrm{in}$ ．$\times 2 \mathrm{in}$ ．	27／3

Post and Packing i／－（any type）．
Tommy Bars
The OSMOR＂JIFFY PUNCH
For cutting smaller holes neatly and quickly with one blow of a light hammer．

$\begin{array}{cr}\text { Hale Size } & \text { Price } \\ \frac{1}{4} \text { in．} & 6 / 6 \\ \text { in．} & 7 / 6\end{array}$ $\begin{array}{lll}1 & \frac{1}{4} \text { in．} & 6 / 6 \\ 2 & \frac{1}{i n} . & 7 / 6 \\ 3 & \frac{1}{2} \text { in．} & 8 / 8\end{array}$ Both types of cutters are of hardened steel and are for use on steel up to 18 s．w．g．Brass and Dural up to 16 s．w．g． Aluminium and Copper up to $14 \mathrm{~s} . \mathrm{w} . \mathrm{g}$ ．

DIALS

 Type A．GLASS DIAL ASSEMBLY（as illus．） measuring 7in．x 7 in． （ $9 \frac{1}{2} \mathrm{in} . x \quad 9 \frac{1}{2} \mathrm{in}$ ．overall） mounts in any position on or above the chassis and works with any type and works with any type of drive．Choice of two 3－colour scales－ G1（L．M．S．）or G2（M．S．S．）．Price complete， 24／6．Pulley assembly for right－angle drive if required $1 / 9$ extra．P．\＆P．I／6．

METAL DIALS
Overall size $5 \frac{3}{4}$ in．sq． background，3－colour． background，M－colour． Type MI，L．M．S．waves． M3，M．\＆2／S．waves． $\begin{array}{ll}\text { M3，M．} \\ \text { Price } 3 / 6 & 2 / 5 \text { each．}\end{array}$ Price 3／6 each．
Pointer， $1 / 6$ ．
Pointer， $1 / 6$ ．
Drum，Drive，Spring and Cord for use with both types of dials，3／2．
We keep stocks of many radio component for use in published circuits，including

WIRELESS WORLD＂
＂NO COMPROMISE＂TRF TUNER． （Osmor coils QAll and QHFII for M．W． and QA12 and QHF12 for L．W．are suitable price 4／－each．）
＂MIDGET．MAINS RECEIVER＊＂ （Osmor coils QAll for M．W．and QAl2 for L．W．are suitable，price 4／－each．）

SENSITIVE 2 VALVE RECEIVER
TELEVISION CONVERTER
（special coils in cans available） PRACTICAL WIRELESS＂＇
3 －speed Autogram．Modern l－valver．A．C Band－Pass 3．R｜｜55 Converter．Attache case portable model high power Amplifier－ 2.

Dear Reader，

We can＇t mention all our products here but shall be glad to receive your erquiries for Chassis，Twning Condensers，Switches， Volume Controls and all other Radio Components．If it＇s iop－quality components and a speedy，courteous serviceyou are looking for－try Osmor．We really shall do our besi for you．

Keep those small components－resistors， condensers，etc．，neatly stored yet visible

OSMIUF＂JAR－RACK＂

 （If you＇re a generous husband you＇ll buyone or two for your wife＇s larder，too－ one or two for appreciate somewhere to store her preserves．）Holds any I Ib．jam jars， wer preserves．Holds any without lids．Easily removed，cannot with or without lids．Easily removed，canno
fall out．Just the thing for the tidy＂HAM fall out．Just the t
or Radio Dealer．
or Radio Dealer， （Jars are not supplied but are easily ob－ tained）．
Length 24 in ，enamelled olive green
Type 2 （as illustrated）for screwing under a shelf，5／9 each，hoids 6 jars．
Length IBin．，enamelled green．
Post and packing 1／－（either type）．

You won＇t

believe it！

the first time you hear your own voice！Have fun and find endless， pleasure in using an inexpensive（ TAPE RECORDER you can build？ yourself．We can supply all the parts to make a really efficient unit，utilis ing your gramophone turntable （which can still be used for its normal pur－ pose）．Send $2 / 6$ only for easy－to－follow blue－ prints and instructions，or ask for details．

I．F．s． $465 \mathrm{k} / \mathrm{c}$ ．Permeability－tuned，with flying leads．Standard size lin．x lizin．x $3 \frac{1}{4}$ in．For use with OSMOR coilpacks and others， $14 / 6$ pair．PREALIGNED，1／6 extra
FREE！
Send 5d．（stamps）for FREE CIRCUITS and full lists of coils，coilpacks and radio components．

DSMDIF radio products Ital．

（Dept．W．43）BRIDGE VIEW WORKS，BOROUGH HILL，GROYDON，SURREY．

A new V.M.F. Transmitter Dutput Meter

Measures RF power up to 10 watts max. at a maximum frequency of 200 Megacycles.

SALIENT FEATURES:-

\star TWO RANGES : $0-3$ watts and $0-10$ watts.
\star IMPEDANCE: $\mathbf{5 0}$ ohms

* MAX. FREQUENCY: $200 \mathrm{Mc} / \mathrm{s}$.
* POWER SUPPLY: 200/250v. 50 cycles.

\star WEIGHT: 10 lbs . nett.
This instrument is ideally suited for measuring conveniently and accurately the power output of small V.H.F. Transmitters in the frequency band of 10 to 200 Megacycles. PRICE: $£ 39 \cdot 10 \cdot 0$

\star DIMENSIONS: $13^{\prime \prime} \times 9^{\prime \prime} \times 8^{\prime \prime}$.

HATFIELD INSTRUMENTS LTD.
 175, UXBRIDCE
 ROAD, HANWELL, LONDON, W. 7

Telephone: EALING 0779/9857

M. R. SUPPLIES, LTD.

Telephone: MUSeum 2958

[^6]

somb a PROFESSIONAL lookina radio at LESS TBAN HALF TO－DAY＇S PRICE

LOUDSPEAKERS－TAX FREE！

ELAC－2 in．dia，Moving Coil， 15 ohms imped． ELAC－ 3 1n．dia．，Moving Coil， 3 ohms imped ELAC－5in．dian，Moring Coil， 3 ohms imped． E．M．I．－8in．Elliptical， 15 ohns imped． PLESSEY－8in．dia．Moving Coil， 8 ohms imped．
PLESEEY－10in．dia Moving Coil， 3 olum GOODMANS－12in．dia，Moving Coil， 15 ohm $23 / 6$ Plus 5／－packing and carriage．
VITAFOX－K12／20 12in．dia．，Moving Coil， 15 ohms imped．

Plus $5 /$ packing and carriage．
£11／11

By famous manufacturer
NEW \＆UNUSED Input ${ }^{200 / 250}$ v．A．C．，Output strong metal hoz size 10in． $37 / 6$ Plus $2 /$ plig．and carr．

H．T．ELIMINATOR AND TRICKLE CHARGER KIT

All parta to construct an eliminator to give an output jator．Uses metal rectifier，$£ 2$ ．

MAINS NOISE ELIMINATOR KIT Two specially designed chokes with tiren smoouling condensers with circuit diagrams．Cuts out all mains
noise．Can be asserabled inside existing receiver． $6 /$－

WILLIAMSON AMPLIFIER KIT A complete kit of parts for the construction of the with ralves，output and mains transformers．

15 gns.

WILLIAMSON AMPLIFIER TRANS－ FORMERS（To specification）

Govt．Surplus－EX．W．D．STEEL AERIALS

Also ideal for fishing rods－All Brond New 12ft，－ 34 ft ，sections of copper－plated steel highly flexible and carriage $1 / 6$ ．Insulated Base， $3 /-$ ．Webbing water proot carrying case with shoulder sling，2／6．

> EX-U.S.A. U.H.F. AERIAL
with matuned detector stage，consisting of V．R． 92 valr etc．Brand new，in carton，5／－

CORRECT ASPECT WHITE
RUBBER MASK
For 12in．Round or Flat－faced Tube

PREMIER MAINS TRANSFORMERS All primarres are tapped for $200-230-250$ ．F malos $40-100$
cycits．All primaries are screened．All LTs are centre
tapeed． SP175B，175－0－175， $50 \mathrm{~mA} ., 4$ \％． 1 a． 4 ．. ． $\mathrm{SP} 250 \mathrm{~B}, 250-0-250,60 \mathrm{~mA}, 4$ マ． $12-2$ 日n 4 v．－3 SP300A， $300-0.300,60 \mathrm{~mA}, 6.3$ v．© 2．3 а．в SP300B， $300-0-300,60 \mathrm{~mA} ., 4$ マ．＠ $2-3$ a． 4 マ．＠

SP350A，250－0－350， 100 mA ．， 5 v．（1） 2.3 a． 6.3 v．
SP351， 350 SP352， 350 ．© 3.6 ．
SP352，3500－0． $350,150 \mathrm{~mA}$ 5 -2.3 ．．．．．．．．．．．．．．． SP375A， $3750-0-375,200 \mathrm{~mA} ., \quad 6.3$ พ．©9 2－3 6．3v，＠3－5a．5，＠2－3 a．
 SP425A， 425

SPECIAL OFFER
\qquad
DOUBLE WPEIAL OFFER MTOETS FORMER 250 watts．

$$
\begin{aligned}
& \text { Input outpl } \\
& 100 \text { voltes } \\
& 110 \\
& 200
\end{aligned}
$$

25／－
$25 /-$
$25 /=$
$25 /-$
$28 /=$
$28 /-$
$38 /-$
$36 /-$
$55 /-$
$48 /-$
$50 /-$
$6 \% / 6$

$$
10 \text { volts }
$$

$$
\begin{array}{lllll}
110 & " & 113 & " & \\
200 & " & 116 & " & \\
210 & " & 119 & " & \text { Price 42/8 } \\
280 & " & 122 & " & \text { Plus } 2 / 6 \text { Pkg., Carr. } \\
230 & " & 134 & ", & \\
240 & " & 146 & " & \\
250 & \text { " } & \\
\text { With the two } & \text { windings connected in serica a }
\end{array}
$$

> PREMIER VARIABLE IMPEDANCE MATCHMAKER "OMO.I5 OUTPUT TRANSFORMER

Designed to meet the demand for an efficient rariable ratio Output Transiormer． 11 ratios from 13：1 to $80: 1$ all centre trapped and can be usel to match any output
valves either single．or push－ull，Class valves either single－or push－pull．Class＂A＂＊＂AB1，＂ combination thercof．I＇rimary lrumactance 60 coil or 15 watta audio 100 mA ．Price， $45 /$－．

METERS

A super quaVING COIL METER
A super quality Yoving Coil Meter batic movement 2 ma Scale dimension 2 tin．Overall dimensions 2 tin．dia．
$1 \frac{1}{6}$ in．deep．Bakelite Case projecting type．At presert scaled 1 amp．R．F．By renoving thermo couple，reversing scale and recalibrating the meter，a bigh grade test instru－ ment with any range allove the basic 5 ＇S．D．may he buith
price $4 / 9$

HEADPHONES
Balanced Armature Low Resistance High Resistance（s．（i．Brown）， 4,000 ohms． $10 / 8$ pair
High Resistance 12／6 pair High Resistance 12／6，pair

ALUMINIUM CHASSIS 18 s．w．g．
Subatantislly made from Bright Alominjam，with four side $7 \times 51 \times 2 i n$.
$7 \times 3 i \times 2 i n$.

$10 \times 8 \times 2$ tin． $12 \times 9 \times 2 \frac{1}{4} \mathrm{in}$ ． $14 \times 9 \times 2 \mathrm{ln}$ ． $10 \times 9 \times 31 \mathrm{~L}$ ． $12 \times 10 \times 3$ in. $14 \times 10 \times 3$ in．
$16 \times 10 \times 3$ in．

BATTERY CHARGER KITS

All incorporate metal rectiflers．Translormers are suitable for $200 / 250$ v．A．C．cycle mains．
Cat．No．
2002 Ch
Charges 6 volt accumulator a．t 1 amp．
Resistance supplied to charge accumulator
2003 Charges 12 volt accumulator at 1 amp． £1．2．6
\＆1．7．6
CHARGER TRANSFORMERS Input 230 ₹．A．C．Output 12 v．at 1 alni）．Completely
shrouded． WEYMOUTH MINIATURE COHL PACK Covaring Mer．／Long／Short wave bands．Iron cored coils．
 WEYMOUTH MINIATURE I．F．TRANSFORMERS 46 Kis Kc / s ，iron cored，permeability tuned， $10 / 6$ pair MINIATURE TUNING CONDENSERS 2 gang，000 mid．with trimuers ．．．．．．．．．．．．．．．．．．．．．．6／9 RADIO CABINET（WALNUT FINISH）

Drilled and cut out for all necessary control mountings and Mains Transiormer，fitted with 6 Amphenol Octal， Valveholders，Aerial，Earth and Gramophone Sockets．
500 pí Tuning Gang Condenser，full vision drive Tuning Assembly consisting of uribreakable peraper 3 －coloured and In metres，kilocycles and station names，price $39 / 6$. TRATED ABOVE AND CHASSIS，TOGETHER £5．5．0 Plus $7 / 6$ Carr．／Pkg．\＆Insurance．

PREMIER RADIO COMPANY

Terms of Business： Cash with order o
（Regd．）B．H．Morrls \＆Co．（Radio）Limited （Dept．W．W．） 207 －EDGWARE ROAD •LONDON •W． 2 Telephones：AMBassador 4033 \＆PADdington 3271／2．
OPEN UNTIL 6 P．M．BATURDAYB．
CLOSED 1 P．M．THUBADAYE．

C．O．D．over \＆1．Please
add $1 /$ for Post Orders add 1% for Pot Orders under $105-1 / 6$ andet ataded．
 Tape Recording Kit-Price £37.4.0 (Plus 15/- Pkg., Carr., \& Insur.)

* Including ALL parts, V'alves, Portable Cabinet, Sin. Loudspeaker, TapeTable, Reel of 'Scotch Boy' Tape and Rewind Spool, and Microphone. the 7-Valve amplifier is specially designed for high quality reproduction Brief Specification: VALVE LINE-UP ; EF37A Firat Stage, 6SL7 Second Stage and Tone Control; 6V6 Output 6 X5 Rectifler ; VT501 Bias and Erase Usciliator : 7193 Hecord Level Amplifier; 6U5 Magle Eye Record Level Indicator. OUTPUT: 4 Watts. FREQUENCY RANGE : $50 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to $9,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$.
Playback Switch; Treble Boost; Bass Boost-on/off. CONTROLS : Volume; Eecord/
Playback Switch; 'Treble Boost; Bass Boost-on/otf.
A VISUAL MAGIC EYE Record Level Indicator is incorporated. The unit is housed in a superbly finished rexine covered portable cabinet which incorporates a compartment for the Microphone when not in use. Weight completo 35tb. Dimensions: 21 in . long, 121 in . deep, $9 \frac{1}{\mathrm{i}} \mathrm{in}$. high.
The RECORDER incorporates an entirely NEW VERSION of the famous LANE TAPE TABLE.
Brief Epecification: Made to high standards and incorpurating ieatures ensuring low level of "Wow "h and "Flutter" hroughout the full length of tape.
FAST REWIND. Prorigion for fast rewind and forward ran in less than 1 min . in either direction. WIND AND REWIND WI'HOU' UNLACING OF TAPE. INSTANTANLOUS BRAKING. TEREE MOTORS Obvlating riction drive.
HIGH FIDELITY RECORD PLAYBACK (1 HOUR APPROX. PLAYING). The Table is fitted with bigh fldelity record playback head of new design wound to high lmpedance and a separate A.C. Erase Head. The Heade are half TAPE SPEED. Tin For use or A $900 / 250,50$ cycles maing onlv
TAPE SPEED: 7 tin. sec. For use on A.C. 200/250, 50 cycles mains only.
MICROPHONE: Crystal—specially designed for Premier by famous manufacturer.

As is utual in all PREMIER KITS, every sistgle item down to the last nut and bott is supplied. The Chassis is punched and layout diagrams and theoretical circuits are ineluded. When completed the PREMIER PORTABLE TAPE REOORDER any other make at double the price. with

SEPARATE UNITS CAN BE SUPPLIED AS LISTED BELOWAMPLIFIER KIT (including 8in. Speaker). ...Ell. 0.0 plus 5/-pkg./carr. AMPLIFIER (already built, wired and tested)... $£ 14.15 .0$ plus $7 / 6 \mathrm{pkg}$./carr. LANE TAPETABLE \& REWIND SPOOL..E16.10.0 plus $7 / 6 \mathrm{pkg}$./carr. PORTABLECABINET (rexine covered).....t4.19.6 plus $5 /$ - pkg./carr. MICROPHONE
REEL OF "SCOTCH BOY". TAPE REEL OF "SCOTCH BOY", TAPE

To those unable to build this PORTABLE TAPE RECORDER we can supply it completely wired, testedand ready topluginat $\mathbf{3 9}$ GNS Plus I gn. pkg./corr.

MICROPHONES

LUSTRAPHONE: Moving Coil: High Impedance. Stand Type ; $55 / 12$ - Hand Mike f6/6/=.
RONETTE-Crystal Mike ; Incorp. the Filter Cell Insert: High Imped. Ball Type : $£ 3 / 19 / 6$. CRYSTAL' MICROPHONE - Rothermel 2ADS6. Especially recommended. $£ 2 / 19 / 6$. Table Stands for all the above $17 / 6$.

F. C. ROBINSON \& PARTNERS LTD.

WE SHALL BE GLAD T(SEE YOU AT DUIR STAND IN RDOM Cl

DURING THE MANCHESTER ELECTRONICS EXHIBITION
IN JULY

The eighth Annual Exhibition of the North-West Branch of the Institution of Electronics will be held at the College of Technology, Sackville Street, Manchester, from 15th to 22nd July, 1953.

TELE-RADIO (1943) LIMITED

WALCHRIS

Magnetic Guitar Pick-up, complete with volume control and detachable screened cable $£ 1100$ RONETTE
(088/5) Crystal Ball microphone \quad E2 100
With Table Stand.
$E 350$
J.B. DIAL ASSEMBLIES

Square Plane. 8-! ratio
Airp'ane. 8-1 ratio..
Fullvision. 8-1 ratio
S.L.5. Ratio 18-1
S.L.
Spin Wheel
S.L.8. Spin Wheel. Ratio 24-1

Caliband Bandset, 6-1. Bandspread. $43-1 \ldots \ldots$.
GARRARD RECORD PLAYERS
", T. T.", with crystal T.O.H.
E9 $14 \quad 6$
T,'" with Magnetic T.O.H
R.C.72, crystal T.O.H.
R.C.75, crystal T.O.H.
R.C. 80 , crystal T.O.H.

201/B Transcription Motor

OSMOR " Q " COIL PACKS

Portable Mains or Battery	E2 10
Medium and Long T.R.F.	E2 ${ }^{1}$
Medium Trawler and Short Mains Superhet	$E 210$
Long, Medium and Short Mains Superhet	E2 8
H.F. Stages	El 0
Frame Aerials	2

OSMOR DIAL ASSEMBLIES
L.M.S. or M.T.S.

ELAC DUOMAG FOCALISERS
F.D. 12/4, Low Flux
F.D.14/9, Medium Flux E2 20

18 S.W.G. ALUMINIUM CHASSIS
$8 \mathrm{in}, \times 6 \mathrm{in}, \times 2 \frac{1}{\mathrm{i}} \mathrm{in}$.
$12 \mathrm{in} . \times 6 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$.
$14 \mathrm{in} . \times 10 \mathrm{in} . \times 2 \mathrm{t}$ in.
76
86
$17 \mathrm{in} . \times 10 \mathrm{in} . \times 2 \frac{1}{3} \mathrm{in}$.
with reinforced corners
Large range of Transformers and Chokes in stock.

NOTENEW ADDRESS:

189, EDGWARE ROAD, LONDON, W. 2.

Telephone: PADdington 4455-6
SHOP HOURS: MON.-SAT. 9 a.m. to 6 p.m. THURS. 9 a.m. to I p.m.

The

TELEVISION PROJECTOR

23 valve s / h. circuit. Sensitivity better than 50 mic . ovolts . Full bandwith. $4^{\prime} \times 3^{\prime}$ picture. 5 channel facility. A.C. only. Insulated chassis. Neutral coloured rexine covered case, size approw. $23^{\prime \prime} \times 22^{\prime \prime} \times 21^{\prime \prime}$, fitted with castors and geared lifting jack for tilt. Deiailed Specification from the Manufacturers :Complete with ^ TELEMIECIANICS LTID. valves, c.r.t. and 3 NEWMAN YARD, NEWMAN ST., optical unit. LONDON, W.1.

LANgham 7965

TELEVISION

for "Fringe" and " Long distance" viewers is vastly improved with the SPENCER-WEST type AC/3 Pre-Amplifier. The specification includes a first stage neutralised triode cathode coupled to a grounded grid triode. The optimum arrangement for best "noise factor". Self-contained power supply unit complete with correctly adjusted interference filter. Price complete, 10 gns. from your dealer or direct. Leaflets, etc. on request.

RECEIVER CONVERSION TO NEW CHANNELS The type $A C / 4$ Convertor units for perfect simple conversion Price complete with 5 valves and self-contained power unit, etc. 15 gns. Available for Brighton booster on London receivers (type $A C / 4 \mathrm{KL}$) and all other conversions. Leaflets on request.

SPENCER-WEST
 QUAY WORKS, GT. YARMOUTH

Phone: Gt. Yarmouth 3009

BY

3 FEET

Television • Radio • Record CABINETS MADE TO ORDER

ANY SIZE OR FINISH

CALL OR SEND DRAWINGS FOR QUOTATIONS
B. KOSKIE
(DEPT. E.)
72-76 Leather Lane, Holborn, E.C. 1
Phone: CHAncery 6791 \& 6792

BRITAINS LARGDSI SUPPUVRS OF QUADLTY TAPE-

 RRCORDING BQUIPNIENISPECERE SFOWROOMS
to permit side by side comparisons of leading makes

it is no exaggeration to say that we have succeeded in gathering together the largest and most up-to-date selection of Tape Recording, equipment in the country. Intending purchasers who can reach our premises in person will find our specially equipped showrooms exceptionally attractive. Those living farther afield can depend on our mail-order department to rarther afield can depend on our mailorder department to render maximum service with atmost experiles for $£ 10$ or more. Fuil list on request.

TYPE DESES EMD RECOITEES								
$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	DESKS	$\begin{aligned} & \text { CASH } \\ & \text { PRICE } \end{aligned}$		DEPOSIT				
					d			
583	Qualtape	1616		$5 \cdot 16$	-			
585	Lane, Mark	1710	0		0			
586	Truvox, Mark IV	232	0		0		16	
587/1	Wearite, Type 2A.	350	0	120	0	2		
587/2	Wearite, Type 2B	400	0	140	0	2		
5881	Bradmatic, Type 5/6R		0	140	0	2	11	
588/2	Bradmatic, Type 5c	4510	0	1510	0			
588/3	Bradmatic, Type 5/6RP	420	0	140	0			
588/4	Bradmatic, Type 5CL	4710	0	1610	0	2	19	
588/5	Bradmatic, Type 5 A	50	0	170	0	3		
589	Soundmirror	330	0	110	0	2		
590	Electrotech, R.C. 7	90 0	0	300	0			
591	Reflectograph	3910	0	1310	0	2	9	0
COMPLETE INSTRUMENTS								
580/2	E.M.I. Portable	1180	0	400	0	7	9	
581/1	Soundmirror	790	0	270	0	4	19	
581/2	Grundig	7815	0	2615	0	4	19	
581/3	Vortexion	840	0	280	0	5	7	
581/4	Pamrek	650	0	22	0	4	2	
581/5	Wirek Magnegraph	650	0	220	0	4	2	
581/6	Grundig 2-speed	840	0	280	0		7	
581/7	Grundig Console	950	0	360	-		13	
58178	Vartexion with Truvox Desk	720	0	240	0	4		
581/9	Vortexion with Wearite Desk	840	0	280	0	5	7	
582/1	Ferrograph, Model 2A	7910	0	27	0	5	1	0
582/2	E.M.t. Emidec	90	0	300	0			
582/3	Simons, Model A		-	280	0	5	5	
582/4	M.S.S., Type R.I		0	44	0			
582/5	C.J.R. Portable	119	0	400	O		11	
582/7	Reflectograph			36	0	5		
ITEM MECLOPILONES								
NO.	DESCRIPTION							Reslo R.V. Ribbon .. ${ }_{\text {g }}$
555	Reslo W.R. RibbonGrampian Moving-co							
557								
558	Rothermel D. 104 Crystal							
559	Rothermel 2 A.D. 56 CrystalCosmocord Mic/30 Desk Model, Cry							
560								
561	Cosmocord Mic/30 Desk Model, C Cosmocord Mic/22-1 Acos Crystal							
563	Cosmocord Mic/16-2 Acos Crystal 12							
564	Lustraphone C. 51 Table Stand							
566	Lustraphone LX. 53 Crystal ds available as required.							
Stands								

A TAPE DESKS, WHADS, MOTOIRS, etc.

* MECROPHONES, TAPES
\& COMMPETE INSTRUMENTS
A ACCESSOPRIES, SERVICE

* CLASSIC SEITICES INCLUDE

AMPLIFIERS-Wide selection by Leak, Acoustical, Rogers, Goodsell, Decca, etc., always in stock.
PICK-UPS-Decca, Leak, Acas, Connoisseur. Also standard styli LOUD same. LOUDSPEAKERS-AI Vitovox Klipschorn in stock
TELEVISION-The best large-screen projection types; also all parts for Tele-King, Tele-Viewer, etc.
We shail be glad to forward you latest "Classic" lists of Quality Equipment on request and fuller information about any lines in which you may be specially interested Please let us have your enquiries.

MODERN ELECTRICS LTD.,

164, Charing Cross Road, London, W.C.2. 'phone: TEMple Bar 7587.

Export enquiries welcomed.
TAPE RECORDERS SOUNDMIRROR
New Table, Twin Track $£ 6910$ Portable Twin Track 874100 SCOPHONY-BAIRD New Model Mk. 2 E68 50 SIMPHONIC New Model IA GRUNDIG 2-speed EMICORDA WIREK

Portable Battery
Model 00 RECORDING TAPE GRUNDIG L.G.H. I,200ft. $£ 200$ SOUNDMIRROR Paper Tape, 1,200ft FERROVOICE Spare Spools E.M.I. H.60, I, 200 ft E.M.I. H.60. 600 ft E.M.I. H. 65 I,200ft. E.M.I. H. 50 1,200ft.

SCOTCH BOY
1,200ft.
600 ft .
Spare Spools, 1200 ft Spare Spools, 600 ft ...
FERROGRAPH
$1,200 \mathrm{ft}$.
1,750 ft.
9" spools

Immediate delivery from stock.

AVO TEST GEAR	
Model 8	E23 10
Model 7 (latest)	± 1910
Uniminor	£10 10
Electronic Mete	± 400
Wide Band Sig./Gen.	£30 00
Valve Characteristic	
Meter	£60
D.C. Minor	65
10kV. Multiplier for	
Model 8	6250
Carrying Cases for	
Models 7, 8 and 40	± 300
ADVANCE	
H.l (Sig./Gen.)	¢25
E. 2 (Sig./Gen.)	¢28 0
J.I. New Model	£25 120
COSSOR	
Oscillograph 1039M.	
New Portable Model	62910
TAYLOR	
ALL NEW TAYLOR TEST	
GEAR IN STOCK AND AVAIL-	
ABLE ON H.P. Send S.A.E. for Catalogue and Terms.	
PICK-UPS	
ACOS ${ }_{\text {G.P. } 20}$ (Std. or L.P.) £3 61	
Spare	E2 00
G.P. 30 L	6361
ECCA	
X.M.S. Magn	¢6 95
CONNOISSEUR	
Super Lightweight,	
L.P./Std...............	± 956
Spare Heads	63

Prompt attention to post orders.

VALVES

We are one of London's Largest stockists - Please write for requirements

MICROPHONES

Mic 22 (Crystal) $£ 660$ Mic 22 (head only)... $£ 4100$ Mie inserts for above $\notin \mathbf{7}$ Mie 16 (Crystal) $£ 1212$ Mic 30 (Crystal) 444
LUSTRAPHONE M/C with T/F.C. 51 M/C less T/F.C. 51 Heavy Table Base for above
Hand M/C with T/F
CH. 51 Mand M / C less T / F CH. 51
RESLOM/C (Low Imp.) RIBBON
FLOOR STAND
(Mic), 3 extensions... £3 126
LEAK AMPLIFIERS Point I, TLI 2
$£ 287$ Point 2, TL25 $£ 3470$
$£ 1212$ Vari-slope pre-amp... £12 12 0 R.F. Tuner Unit Type VS $\mathbf{£ 3 4} 190$
R.D. BABY DE LUXE"

New Model Pre-amp. £22 100

TAPE DECKS
WEARITE 2A (limited stock), with complete instructions for Associated Amplifier, $\mathbf{6 3 5} 00$, carriage extra.

Colossal Purchase of EXPORT SURPLUS Auto-Changers

SEVEN TYPES

With choice of magnetic or crystal heads
PRICES from
£7-10-0 to $£ 13-10-0$ Tax paid
SHOWING NEARLY 40% REDUCTION

Full list of models available on request.
Cash or Easy Terms.

FRITH RADIOCRAFT LTD. 69-71 Churchgate LEICESTER

Phone: 58927

direct

REPLACEMENTS
(Proprietor: A. Rose)
134-136, LEWISHAM WAY, NEW CROSS, S.E.I4 Tel: TIDEWAY 3696-2330
SOBELL TI07-T89 LINE o/p Transformers 47/6d.
TI20 LINE o/p Transformer 72/0d.
PHILCO 1707-1708 LINE o/p Transformer 40/6d. C.R.T. Heater Isolating Transformers, high quality, low capacity, state voltages required. 26/6d. RADAR KILOVOLTER 3 -30kv.

78/6d.
ALL PRICES INCLUDE PACKING \& POST
Annual Holidays: 27th July to 3rd Aug.

TRANSFORMERS COILS CHOKES
 SPECIALISTS IN
 PLEASE NOTE THIS COMPANY'S NAME CHANGED FROM RADIOMENDERS LTD. TO ELECTRO-WINDS LTD. ON THE 4th MARCH, 1953

FINE WIRE WINDINGS MINIATURE DEAF AID TRANSFORMERS, PICK.UP CLOCKAND INSTRUMENTCOILS, ETC.

ELECTRO-WINDS LTD.

123-5-7 PARCHMORE ROAD, THORNTON HEATH, SURREY LIVINGSTONE 2261

SELECTIVE TRANSMISSION MEASURING SET MODEL RP 3110

Designed and manufactured for G.P.O.

This is a precision instrument for measurements on multi-circuit coaxial cable carrier systems by means of a comparison with locally generated signals of known frequency and level.

Frequency coverage: $60 \mathrm{Kc} / \mathrm{s}-3 \mathrm{Mc} / \mathrm{s}$ in 7 ranges.
Calibration accuracy : below 0.2% or $2 \mathrm{Kc} / \mathrm{s}$ whichever is the greater.

Power supplies: $200-250 \mathrm{Volt} .50 \mathrm{c} / \mathrm{s}$

Range of measurements:
through levels $\quad+10 \mathrm{db}$ to $=61.5 \mathrm{db}$ or terminated levels +10 db to -81.5 db referred to 1 mW in 75 ohms

BRITISH COMMUNICATIONS CORPORATION LTD.

SECOND WAY, EXHIBITION GROUNDS, WEMBLEY, MIDDX.
Telephone: WEMBLEY 1212
Cables: BEECEECEE, WEMBLEY

fidelity at all speeds uniformity within $\pm 0.5 \mathrm{db}$

Two features of this plastic backed, medium coercivity tape which makes it an essential factor in high quality tape recording. 'Scotch Boy' is now made in 6 reel sizes offering a wide range of playing times for private or professional use, with all makes of tape recorders. Used by the BBC.

Magnetic Data

Coercivity 250 Oersteds.
Total Remanent Flux $0.4 / 0.5$ lines $1_{4}^{\prime \prime}$ width. Uniformity within a reel $\pm 0.5 \mathrm{~d}$.b.

Frequency Range

$50 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$ at a playing speed of $7 \frac{1}{2} \mathrm{in} / \mathrm{sec}$.

Write for further particulars to:
MINNESOTA MINING \& MANUFACTURING CO. LTD
167 STRAND, LONDON, W.C. 2 TEMple Bar 6363

Illustrated are the Model 81600 that develops a force of $\pm 300 \mathrm{lbs}$ and the midget Model with a force output of approximately $\pm 2 \mathrm{lbs}$ for optical-cell research and hairspring torque resting, etc.

GOODMANS INDUSTRIES LTD AXIOM WORKS ' WEMBLEY ' MIDDX • Phone : Wembley 1200 (8 lines),

HANNEY of BATH offers

CATHODE RAY TUBES. All prices include tax.

MULLARD

MW6-2, projection eube.
MW22-16, 17 or 18, 9 in.
MW31-16, 17, 18 or 74 (grey filter screen), 12 in .
MW36-22 and 24, 14 in . rectangular
MW43-64, 17 in . rectangular.
C. $12 \mathrm{~B}, 12 \mathrm{in}$, aluminised. \qquad
C. 12 FM , tetrode with ion trap
C. 14 BM , I4in, rectangular, aluminised C.I7BM, 17in. rectangular, aluminised

MAZDA
CRM. 122 and CRM. $121 \mathrm{~B}, 12 \mathrm{in}$
CRM.123, 12 in . aluminised
COSSOR
I21.K, 12 in
$\pm 8 \quad 610$
85.K, 15 in.

FERRANTI
T/2/44, T12/54, T12/91 and T12/92, 12 in .
G.E.C.

6504A and 6505A, 9in. aluminised
ed.
6705 A and $6706 \mathrm{~A}, 12 \mathrm{in}$. aluminised.
7102 A , replaces 6705 A , 12 in . aluminised. \& $1210 \quad 3$

ENGLISH ELECTRIC
T900, T901 and T901B, 16 in
$\begin{array}{rrrr}616 & 13 & 8 \\ f 19 & 9 & 3\end{array}$

Ion Traps for all the above tubes (where applicable), each
£ 17146

Please add 10% carriage, packing and insurance to all tube prices, any excess being refunded. All tubes despatched per passenger train at Railway's risk
AVAILABLE SHORTLY. Constructors envelopes for the new WIDE ANGLE VIEWMASTER and the SOUNDMASTER TAPE RECORDER, both being designed by the designer of the Viewmaster. May we send you details?
VIEWMASTER, TELEKING, MAGNAVIEW and WILLIAMSON AMPLIFIER. All components still available as previously advertised. Send 6d, in stamps for our new COMPONENTS CATALOGUE now.

L. F. HANNEY

77. LOWER BRISTOL ROAD, BATH

Tel. 3811

WILL

 HUY any U.S.
suipples

 radio parts, equipment*

APN-9, TS-67, R-89B/ARN-5, ARC-1, ARC-3, ART-13, BC-221, BC-348, SCR-522, MN-53, MN-61, RA-1, MN-31, MI-32, ARN-7, Headsets, Mikes, Cannon Amphehol plugs, 274-N, ARC-5, Dynamotors, Test sets, "TS-" or "1-" prefixes.
State condition and Best Price Aircraft Radio Industries, Inc,
85 St. John Street, New Haven, Cables: Arico. Conn., U.S.A

PRATTS RADIO

1070 Harrow Road, London, N.w. 10
(Nr. Scrubs Lane)

Tel.: LADbroke 1734

 AMPLIFIERSCollege general-purpose anith MODEL ACl0E, 4 valve, 10 watts. Neg. feedback.
 3 starees, f15/15\%. MODEL AC32E. 32 watts P/P output. Feerlhack over 3 stages. $18 / 18 / \%$ MODEL V10E, for D.C./A.C. mains, 6 valve P/P output. Feedback over ${ }^{3}$ stakes, $12 / 19 / 6$. All are COMPLETE WITH CASES and
chrome handles. They have a SEPARATE chrome hatides. They have a SEPARATE
microphone Etare, SEPARATE milse
MODEL AC10E £10/7/6. microphone stake, SEPARATE mike and gram. inputs allowing MIXING of speech and music. Onput foltages average wit with Bass and Treble controls. P/P output of 9 watts. This amplifer incorporates an 18 section O/Transir., variable feedback from zero to 26 db. Output imped. 3.6 to 230 . Complete chassis, £13/19/6. MODEL Q4C. 4 valve 4 watt unit Bass and Treble controls. Varlable feedback. O/Imp. 3 to 150 om . Chassis complete, £日/15/-. Complete range of accessories available. Send atamp for lists. All amplifiera are ready for use.

SOLDERING INSTRUMENTS

Factory Bench Line, Maintenance Engineer \& Home Constructor

Supplied for any voilt range to meet our world-wide consumers demands

- Heating time: 90 seconds.
- Consumption : 25 watts.
- Weight: 4 ozs.
- High temperature.
- Handle unaffected by element temperature.
- Length of instrument : 9°.
- Equally suitable for daily or intermittent use.

坔" dia. bit Standard Model.
$t^{\prime \prime}$ dia. bit Standard Model.
$\frac{3}{17}$ " Detachable bit)Type (Factory Bench Line).

Made in Englard
Registered Design (British, U.S.A.,
Canadian) and Foreign Patents.

- Apply Sole Manufacturers and Suppliers

ADCOLA PRODUCTS LTD.
Sales Offices \& Works: CRANMER COURT, CLAPHAM HIGH ST., LOMDON, S.W.4.

MACoulay 4272

important when you realise that the quality of the television picture is entirely dependent on the efficiency of the aerial system. Using an inefficlent aerial is like running a good motor car on inferior petrol-the final performance suffers. That is why we advocate the careful selection of the aerial type, the use of good quality downlead and the aerial installed correctly. These are the reasons why you should specify an Aerialite aerial, accessories and downlead.

THE AERIALITE

TV AERIAL RANGE
includes all types from the " fringe" (Aerfringe, Aerbeam) to the indoor dipoles for starting board mounting (Aeradoor). The prices are from 13/6.

AERIALITE ACCESSORIES

include lightning arrestors, connector and matching boxes, mains and car ignition suppressors, coaxial plugs and sockets-the latter are specified and used by a large percentage of the television
 receiver manufacturers.

CAR AERIALS Model 6 side fitting, telescopic, chromium plated Model 8 under car fitting (large)............ $f 1186$ Model 9 under car fitting (small)............ Model 16 mudguard fitting, telescopic, chromium plated …... $63 \quad 30$
Model 17 header fitting, telescopic, chromium plated

C1 126
Please send for details of our products to:
Aerialite Limited, Castle Works, Stalybridge, Cheshire.
qeरkidntievials

SHORTAGE OF RADIO and T/V ENGINEERS

There is an assured well-paid future for those trained and willing to train in electronics, radar and radio. Modern industrial techniques demand more and more highly trained personnel and the gap between demand and supply is still widening.

This is your opportunity - write for our free brochures giving full details of courses to:

E.M.I. INSTITUTES
DEPT. I6R, 10 PEMBRIDGE SQUARE, LONDON, W.2. Telephone: Bayswater 5131/2.
The College associated with a world-wide electronics industry.

YEAR COURSE

We offer full-time day course for one year in the Principles and Practice of Radio and Television.
Next course commences 24th August, 1953.

3 YEAR COURSE

This course in Telecommunication Engineering includes one year's Factory attachment. Next course commences 24th August, 1953.

Associated with 6 H.M.V: MARCONIPHONE COLUMBIA etc.

SPECIAL PRODUCTS

Government Departments in all parts of the world who experiehce difficulty in obtaining QUICKLY transmitter equipment to the special requirements are continually approaching us to assist.

We are in a position to supply at very short notice small quantities of complete Transmitters covering say, $2-18 \mathrm{mc} / \mathrm{s}$ with outputs of 50 watts, 150 watts, 350 watts and 500 watts.

STILL AVAILABLE

From stock R.C.A. Transmitters Type ET.4332, ET.4336B \& K, and T.l|31 VHF, reconditioned and complete with Valves.

Send brief specification of requirements and every endeavour will be made to meet it speedily and efficiently.

McELROY-ADAMS MFG. GROUP LTD.

(Sole concesaionaires U.K. for Hallicrattor Communication Equipment) 46, GREYHOUND ROAD, LONDON, W. 6 Cables: Hallicraft London.

SAVE TIME AND MONEY-BUY ONE INSTRUMENT

Get quick accurate readings RESISTANCE: 0.1 to $1,000,000$ ohms. 0.1 to 11 continuously variable plus nine-stage decade resistance gives 50 ft . scale !ength. Measured at D.C.
CAPACITY: 10 p.f. to $1,000 \mathrm{mfds}$. Ca力acity 10 to 1,100 p.f. infinitely variable plus nine sreps if 1,000 p.f. Measured at 1,000 cycles. INDUCTANCE : 10 microhenries Inductance $\begin{gathered}\text { to } 1,000 \text { henries infinitely variable plus nine }\end{gathered}$ steps if 1.000 microhenries. Measured at 1.010 cycles.

> MODEL UB202 UNIVERSAL I M PEDANCE B R I D G E Accuracy to $\pm 1 \%$

Everyday needs are catered for fully by this one compact, robust, high-quality instrument. It incorporates a valve oscillator giving $1,000 \mathrm{c} / \mathrm{s}$ and a visual nul! detector preceded by a two-stage tuned amplifier, whilst provision for passing current through
coils under test is also made. Both meters have overload protection.
Whether your field lies in experimental, production or service engineering, this instrument will prove an ndispensable aid. Please write for full specification.

BRITISH PHYSICAEBCAB ORATORIES LTD
 Tel: RADLETT 5674-5-6

NOW - regarding this question of LP

$M_{\text {ANY }}$ Thousands have already extended their record reproducers to include the revolutionary Microgroove Records, and many thousands more will feel the need to do so now that H.M.V also have entered the LP field. To these people we wish to point out that there is more in Long Playing Reproduction than meets the eye ... there is plenty of scope for buying unsuitable equipment which does not match your existing equipment. We beseech you, therefore, to avail yourself of our Free Technical Guidance Service before se beseech you, thererore, to aval AUTO-CHANGERS, BASS REFLEX CABINETS, SPEAKERS, etc. It will cost you AUTO-CHANGERS, BASS REFLEX CABINETS, nothing and will undoubtedly save you time, trouble and money,
available to callers from 11 a.m. to $6 \mathrm{p} . \mathrm{m}$. daily, including Saturdays. If you cannot call available to callers from 11 a.m. to 6 p.m. daily, including Saturdays. If you
let us have your enquiries by post-they will receive immediate attention.
A word in the ear of those who have been used to fibre needles. All the single-record Gram Unirs and Auto-changers reconmended and supplied by us can be supplied with pickup head to take standard or miniature thorns for 78 r.p.m. if preferred.
N.R.S. "SYMPHONY" AMPLIFIERS, fitted with the patent "three-channel system, " giving independent control of Bass, Middle and Top, thus affording the maximum possible control of tone and compensation for recording deficiencies. Especially essential when mixing the playing of old and new 78's with the new LP records. Scratch control and negative feedback also incorporated. Woden transformers. S-watt model only 10 gns. IO-watt model (push-pull triodes), 15 gns. Carr. 5/-. When ordering, state output impedance required if known.

GARRARD 3-SPEED AUTO. CHANGERS, Model RC80A. The very latest model, normally only available for export. We consider ourselves very fortunate to be able to offer this finest of all autochangers, fitted with special pick-up arm to take two separate DECCA or ACOS HEADS. from stock at present. (Not to be confused with auto-changers fitted with turnover pick-up.) INTERCHANGEABLE on motor board with previous models. Price $6 / 5 / 3 / 3$. Or Special Offer complete with pair Acos GPI9 and GPI9LP heads, $\mathbf{6 1 9 / 5 / -}$, or two Decca XMS heads, $£ 20 / 10 /-$. Carr. and pack. $5 /$. Advice re heads if required. Substantial
rexine-covered portable case to house above 90/-, carr 5/- Extra P U Head to rake thorn needles for playing your old 78's if required. needles for P
$30 /-$ and $35 /$.

MODEL RC75A, current model, same specification as above but finished in attrac tive beige hammer-finish instead of dark brown. Also, 7in. record Centre-Spindle optional at $20 / 9$ extra instead of obligatory. Our special offer: $£ 13 / 10 /=$ or with two Acos heads $€ 17 / 10$ /, or two Decia $X M S$, A18 15 carr. 5 extra Extra heads for horns ex complere in de lux horns, 30 /and 35 Complece in de luxe portable case with locke, $\mathbf{6 5}$ extra.
'SYMPHOMY" BASS REFLEX CABINET KITS, 30 in . high, consist of fullycut $\frac{3}{4}$-in.-thick, heavy, inert, non-resonant patent acoustic board, deflector plate, felt, all crews, etc., and full instructions. 8 in peaker model, 85/=; 10 in speaker model $97 / 6$; 12 in. speaker model, $€ 5 / 7 / 6$. The design is the final result of extensive research in our own laboratory and is your safeguard of optimum acoustic results. Carriage $7 / 6$ Ready built, $7 / 6$ extra.
SPEAKERS AT PRE-TAX PRICE. We are pleased to be able to offer from our large
pre-tax stock the fine 12 in . IO-watt P.M. speakers by Grampian. Price $£ 7$ each, plus carriage 5/-

DECCA 3-SPEED GRAM UNIT, incorporating selected motor and turntable cushion-mounted on brown unit plate with XMS pickup arm to take latest 3 -pin plug-in pickup heads. Units supplied with springs for floating plate on wooden motor-board. Our special offer: $£ 7 / 10 / \mathrm{m}$, or complete with two Decca XMS Heads, $£ 12 / 15 /=$, or with Acos GP19 and GP19LP, $£ 11 / 10 / \%$. Post and packing 2/6.
GARRARD 3-SPEED GRAM UNITS, Model TA, for A.C. In stock at long last. Complete with plug-in turnover Magnetic or Astatic Crystal Pickup Head, $\mathrm{fl0/5/-} \mathrm{}$, paid.
CONSOLE AMPLIFIER CABINETS, 33 in . high, lift-up lid, take Gram Unit or Auto-changer, Amplifier and Radio Feeder Unit, finished medium walnut veneer. Price 8 gns., also de luxe version, $\in 10 / 5 / 6$, carriage extra. Bass Reflex Cabinets to match available. Details $2 \frac{1}{2} d$.
COMPLETE RECORD PLAYERS, single-record and auto-change. Send for catalogue giving details of our single-record and auto-changing models at bargain prices combined with technical excellence.

RECORD PLAYER CASES, rexine covered, ex Manufacturer. To clear, $39 / 6$ each.

NORTHERN RADIO SERVICES
16 KINGS GOLLEGE RD., ADELAIDE RD., LONDON, N.W.3.

Phone: PRimrose 8314
Tubes: Swiss Cotrage and Chalk Farm. Buses: 2, 13, 113, 31, 187

Quartz Crystals of any shape and size cut and ground precisely to specification and coated, if required, with Gold, Silver, Aluminium or Rhodium, etc.
Brookes Crystals Ltd.
Suppliers to Ministry of Supply. Home Office, etc.
10. STOCKWELL STREET, GREENWICH LONDON, S.E. 1)

Phone: Greenwich 1828
Grams: Xtals Green. London.
Cables: Xtals, Londan

Taylore

TESTEQUIPMENT

Please write for our illustrated catalogue

TAYLOR ELECTRICAL INSTRUMENTS LTD.

MONTROSE AVENUE, SLOUGH, BUCKS.

TRADE ONLY

WE hold large and comprehensive stocks of all types Radio Components. Your enquiries are invited for condensers, resistors, volume controls, fuses, valve-holders, headphones, etc., etc., also new surplus valves.

Ring MUS. 5929-0095, for immediate attention.
R. C. SERVICES (RADIO)
117. CHARLOTTE STREET - LONDON - W.1.

NEW

Designed to meet the demand for Egen relialility within the smallest possible compass, these exceptionally small carbon potentiometers ($z^{\prime \prime}$ diameter) retain all the desirable features of their standard-size counterparts. The special Egen carbon deposition process ensures a highly stable 4-3 resistance element of extreme durability.

Double-contact rotor provides firm balanced contact with exceptional freedom from wear and noise. Positively located soldering tags, silver plated
for easy soldering. All steel parts rustproofed. Standard resistance values available, from 5000 ohms to 2 megohms.

Type 115 is identical to Type 105 except that a 2-pole Q.M.B. switch is incorporated.

SUB-MINIATURE VOLUME CONTROLS For use in Deaf Aids and other miniature electronic apparatus

PRE-SET RESISTORS A wire-wound pre-set resistor for panel or chassis mounting
Export enquiries welcomed

EGED

POTENTIOMETERS
EGEN ELECTRIC LTD., CHARFLEET INDUSTRIALESTATE, CANVEY ISLAND, ESSEX

AIR-SPACED ARTICULATED

offer a unique combination of
FRACTIONAL CAPACITANCE
\checkmark HIGH IMPEDANCE
\checkmark MINIMUM ATTENUATION
ALONG WITH
\checkmark EXCEPTIONAL FLEXIBILITY
LIGHT WEIGHT

38 STOCK TYPES

FOR ANY OF YOUR STANDARD

 OR SPECIAL APPLICATIONSA few of the very low capacitance types are:

Type No.	Capacit. $\mu \mu$ F/fi.	Impedance ohms	O.D.
C. 44	4.1	252	$1.03^{\prime \prime}$
C.4	4.6	229	$1.03^{\prime \prime}$
C.33	4.8	220	$0.64^{\prime \prime}$
C.3	5.4	197	$0.64^{\prime \prime}$
C.22	5.5	184	$0.44^{\prime \prime}$
C.2	6.3	171	$0.44^{\prime \prime}$
C.II	6.3	173	$0.36^{\prime \prime}$
C.I	7.3	150	$0.36^{\prime \prime}$

TRANSRADIO
 CONTRACTORS TO H.M. GOVERNMENT
 LTD.

138a CROMWELL ROAD, LONDON, S.W. 7

Wirdeless World

RADIO, TELEVISION
A N D
E L E C T R O N I C S

43 rd YEAR OF PUBLICATION

In This Issue
EDITORIAL COMMENT 295
STEREOSCOPIC TELEVISION 296
SUPPRESSING GRAMOPHONE SURFACE NOISE 298
INEXPENSIVE PICKUPS ON LONG-PLAYING RECORDS. By G. H. Russell. 299
AUDIO DEVELOPMENTS 301
MODERNIZING THE WIRELESS WORLD TELEVISION RECEIVER-- 3 306
TRANSISTORS—6. By Thomas Roddam 311
METER SHUNTS 313
LETTERS TO THE EDITOR 315
CORONATION BROADCASTS 317
WORLD OF WIRELESS 320
THE OHMMETER. By W. Trusting 323
COLOUR TELEVISION 329
WAVES AND AERIALS. By " Cahode Ray" 331
RATIONAL PLANNING OF RADIO CHANNELS 335
HEIGHT OF THE IONOSPHERE 338
MANUFACTURERS' PRODUCTS 339
RANDOM RADIATIONS. By "Diallist" 340
UNBIASED. By "Free Grid" 342

VALVES, THBES E CIRCUITS
 7. WIRING CONSIDERATIONS WHEN USING HIGH Gain valves at high freouencies

The published figures for input damping usually refer to the valve alone; for instance, for the EF80 the input damping is $10 \mathrm{k} \Omega$ at $50 \mathrm{Mc} / \mathrm{s}$. The effective input damping of an EF80 in the lay-out illustrated is, however about $3.9 \mathrm{k} \Omega$ at $50 \mathrm{Mc} / \mathrm{s}$, due to the inevitable small reactances introduced by leads and by the inductive reactances of the decoupling components. At frequencies above $20-30 \mathrm{Mc} / \mathrm{s}$ leads even $\frac{1}{4}$ " in length form appreciable reaetive elements. Reduction of lead lengths cannot however be pursued indefinitely, so that a compromise is usually adopted between unnecessarily long leads and lead lengths which would involve difficulty during mass production and servicing of the equipment. DESIGN HINTS. The cathode and screen electrodes should be well decoupled for optimum results. Furthermore, the cathode capacitor can be made to resonatc with its own scries inductance and the inductance of the cathode lead so as to offer a negligible impedance at the freguency under consideration. This method, however, is likely to depend critically upon the type of capacitor used; for instance, the performance with a 500 pF mica capacitor might be different from that experienced with a ceramic capacitor of the same value.
In some cases it is desired to vary the grid-to-cathode bias on the valve in order to achicve a measure of gain control. Unfortunately, as the gain is reduced there is a simultaneous increase in the effective parallel input damping resistance. The input capacitance is also reduced in value. The bandwidth and the resonant frequency of the grid tuned circuit may therefore change as the gain is altered. This effect can be minimised, however, by the introduction of a critical amount of negative feed-back in the cathode cireuit of the valve. This is usually achieved by leaving a portion of the bias resistor undecoupled. For the EF80 it is suggested that an undecoupled 33Ω resistor should be connected to the cathode pin of the valve-holder, the remainder of the cathode resistive load, i.e. a 150Ω resistor being decoupled to chassis in the usual way. This circuit introduces a loss of approximately 2 dB per stage.

Fig. 1. Example of Wiring Layout.
Fig. 2. Circuit Diagram corresponding to Fig I.

[^7]
Electronic Confusion

AMERICAN researches into the origins of our art, reported recently in Tele-Tech, would suggest that the word electronic is of far greater antiquity than most of us think. It was undoubtedly used in The Philosophical Magazine (London) of June, 1832, by no less a person than Michael Faraday. But, rather disappointingly, there can be little doubt that it was a misprint for electrotonic, a word Faraday had used elsewhere at the same time. Can we regard this as an inspired printer's error, or an augury of future confusion? Everything was clear enough 60 years ago, when Johnstone Stoney coined the word electron, with electronic as its adjectival form. The confusion began much later when the noun electronics was formed, with a highly specialized meaning. What precisely, is electronics?

If a public opinion poll were conducted to ascertain the accepted definition of the noun electronics, laymen would probably describe it hazily as "the newest kind of electrical engineering, like that applied to wireless and radar." More technically informed opinion would probably be sharply divided into two groups. The definition of the majority would read something like "radio-like methods and devices, particularly valves, applied to non-communication uses." The more academic section would probably offer, as nearly as they could remember, the definition of the American Institution of Electrical Engineers, which runs "Electronics is that branch of science and technology which relates to the conduction of electricity through gases or in vacuo." There is all the difference in the world between these definitions, and in their diversity are all the seeds of confusion and misunderstanding. Some of us are even inclined, as a matter of expediency, to the dangerous practice of applying the two definitions interchangeably.

There has lately been a feeling that the American I.E.E.'s definition should be widened to embrace many modern devices and techniques (notably semiconductors) that have come into use since the word was coined. Expression was given to such ideas by Professor W. L. Everitt, who went so far as to propose, in the American Proceedings of the I.R.E., that
electronics should be redefined as "the science and technology which deals primarily with the supplementing of man's senses and his brain power by devices which collect and process information, transmit it to the point needed, and there either control machines or present the processed information to human beings for their direct use."

That definition is, to our mind, quite unsatisfactory and we do not seem to be alone in that opinion. B. E. Noltingk, writing in Proc. I.R.E. for May, says "The proposed new definition of electronics is altogether too wide. It is, in fact, almost synonymous with instrumentation, and if adopted, some new word would be needed when it was required to distinguish between pneumatic instrumentation and what is at present called electronic instrumentation." He goes on to propose that the only widening of the old definition that is necessary concerns the state of the electrons involved. "If, instead of limiting them to flow through a gas, we include in electronics any device in which electrons travel otherwise than along normal conductors, then I maintain that the definition has been brought up to date without stretching it beyond current usage."

It should be easy enough to write a precise definition along the lines suggested by Mr. Noltingk that would embrace those devices and techniques that are at present on the fringe of electronics.

Flam-less Perfiormantice

Congratulations have been showered on the B.B.C. for the manner in which the Coronation broadcasts were conducted, both on sound and vision. The general public has already shown its appreciation of the superlatively high standard maintained on the "programme side": readers of this journal will no doubt join with us in congratulating the engineering division of the B.B.C. on what was probably the greatest feat of operational skill in the whole history of broadcasting. Elsewhere in this issue are described some of the methods used so successfully on the Corporation's busiest day.

Stereoscopic Television

Is it Practicable for Broadcasting?

THE film industry's idea that three-dimensional films will prove an effective answer to the growing attractions of television has naturally made a lot of people ask "why not three-dimensional television?" It seems reasonable to suppose that the stereoscopic principles used in films could be applied to television, and, indeed, a number of experimental stereoscopic television systems have already been built and tried out on closed circuits. There is no difficulty, in fact, in getting stereoscopic television to work: the main problem is in making it practicable for broadcasting purposes-assuming, of course, that it is a desirable thing to have in the first place. At the moment there seems little chance that stereoscopic television can be made "compatible" with existing television systems, and for that reason the B.B.C. is not very interested in it. But there is some possibility that it can be made practicable for any new television broadcasting services that may be set up in the future.

Question of Bandwidth

As in colour television, one of the main technical problems is the bandwidth requirement. The basic principle of stereoscopy is to present the spectator with two separate views of the subject, a left-eye view and a right-eye view, and in telcvision this would mean transmitting twice the normal amount of information and so doubling the bandwidth. In future television systems, of course, it may be possible to do this. But if not, there is the alternative of transmitting only half of the information in each view so that the bandwidth could remain unchanged. This would reduce the definition of each view, but any subjective loss to the spectator might be more than made up by the subjective gain given by the three-dimensional effect. From this point of view a stereoscopic system might actually be more efficient than an ordinary system in its utilization of bandwidth, for with ordinary television our ability to perceive three dimensions is entirely wasted on a picture which only has two dimensions. We might as well look at the screen with only one eye-and, in fact, some people actually get a better impression of depth by using only one eye, perhaps because this impression is based purely on the relative sizes and clarity of focus of objects and is not affected by the other eye telling the brain that "it's all on a flat screen anyway."

Probably the best-known method of achieving stercoscopy in the cinema is by the use of optical filters. The right-eye view and the left-eye view are projected on to the screen through different filters, either coloured or polarized, and the people in the audience have to wear spectacles with corresponding filters to separate them again. This principle has been used in a number of closed-circuit industrial television systems, but is not very suitable for broadcasting because of the inconvenience of having to wear spectacles
all the time. The filters can be avoided by displaying the two views side-by-side or in time sequence, but again the spectator has to use some kind of viewing device to separate them and this is just as inconvenient as the spectacles.

Stereoscopy Without Spectacles

There are, however, three-dimensional film systems in which the viewer does not have to wear spectacles, and most of these are based on an ingenious principle devised by Frederick Ives in 1902 for making and vicwing stereoscopic photographs. The left-eye view and the right-eye view are separated for the spectator by a mask containing a large number of thin vertical slots which is placed just in front of the screen. Fig. 1 illustrates the basic principle. When the observer looks through a slot at the screen his right eye sees one small section of screen and his left eye another section adjacent to it, and as long as the slot is narrow enough the two eyes cannot possibly see the same section. The complete system is shown in Fig. 2. The left-eye view and the right-eye view are presented together on the screen by being split into small vertical sections and interlaced-as shown by the alternating " L " and " R " sections across the screen. A short distance in front is the slotted mask, and this is arranged so that when the spectator looks through it his left eye only sees the "L" sections and his right eye the " R " sections, on the principle explained in Fig. 1. Each eye then integrates the thousands of small sections it sees into a complete picture. There are a number of positions round the screen where conditions are right for viewing, and, in fact, quite a large audience can be accommodated.

The process of getting the two views interlaced on the screen in the first place is simply the reverse of the viewing process-that is, to project them from different angles on to the back of the screen through a slotted mask. When the system is used for viewing still stereoscopic photographs the two views have to be interlaced on the same piece of film and this is again done by a slotted mask, inside the camera.

Application to Television

How, then, could this principle be applied to television? The most obvious arrangement is shown in Fig. 3. At the transmitting end the left-cye view and the right-eye view are interlaced on a translucent screen by means of a slotted mask. The composite picture is then viewed by a camera and transmitted to the screen of the receiver, where the two views are separated by another slotted mask. This could obviously be done with an existing television system and no changes would have to be made either at the transmitter or at the receiver. The system would not be "compatible," however, because the received
picture seen without the mask would not be like an ordinary television picture but would have a rather blurred appearance.

Another possible method of interlacing the two views at the transmitting end would be to make use of the electronic interlacing already existing in the television system. In other words, in a complete picture period one view could be transmitted on the first frame (the odd lines) and the other view on the second frame (the even lines). This would necessitate two synchronized cameras with an electronic switch arranged to select their outputs alternately. An advantage of the scheme is that it would avoid the loss of light introduced by the slotted mask and translucent screen at the transmitting end of Fig. 3. It would, however, necessitate vertical scanning; and, with the existing television standards, the viewer would probably experience flicker, for each of his cyes would receive only 25 frames per second instead of the usual 50 per second.

Apart from the problems of applying the Fig. 2 principle to television it has two inherent disadvantages which go against it under any circumstances. The first is that a spectator looking obliquely at the screen from the side sees exactly the same threedimensional image as he would do from a central position, when clearly he should from that position get more of a side view, as in the live theatre. So a change in viewing position does not produce the appropriate change of aspect. The second drawback is that between the viewing zones where the correct
stereoscopic effect is obtaincd there are zoncs in which the spectator gets an "inverted" stercoscopic effect, the right eye receiving the left-eye view and the left eye the right-eye view. These "inverted" zones are the same width as the others, so that when the spectator moves about he sees the picture "jumping in and out" all the time.

"All-round" Viewing System

A system has been devised, however, which overcomes these disadvantages, and readers may have seen something like it used in shop windows for advertising purposes-a three-dimensional photograph which changes appropriately in aspect as one moves around it. The photograph is produced by moving a camera, with a slotted mask in tront of the film, around the subject in an arc, and the result is a picture composed of a series of vertical strips in each of which the viewpoint changes gradually from left to right. Thus the composite picture does not contain just two views, as in the Fig. 2 system, but a multitude of views from various angles merging into one another.

Fig. 4 shows what happens when this composite picture is viewed through a slotted mask-and here it has been assumed that the camera has been moved not continuously, but in a series of six steps, each position giving a slightly different view from the next. As the spectator moves to the right the view on the film becomes increasingly right-sided and as

Fig. 3. Possible stereoscopic television system utilizing îhe principle illustrated in Fig, 2, A composite picture is transmitted.

Fig. 4. Principle of stereoscopic system in which the view changes appropiately with the viewer's position. Across each vertical section of the composite picture the aspect progressively changes from a right-side view to a left-side view (indicated by R -. - L). In practice, the viewer looks through a lorge number of slots ot the same time, as in Fig. 2.
he moves to the left it becomes increasingly left-sided-and all the time a difference is maintained between the views seen by the two eyes, so that he gets the appropriate stereoscopic effect from all positions. Actually there are still viewing zones in which the spectator gets the "inverted" stereoscopic effect, but as can be seen from Fig. 4 these have a very small angular width compared with the correct viewing zones and are passed through so rapidly as to be hardly noticeable.
A method of applying this optical principle to tele-
vision has already been proposed by one worker. Instead of the photographic camera moving around the subject, this has six lens-systems, arranged in an arc, which focus their respective views through slotted masks on to a translucent screen. The screen therefore displays a composite picture of six interlaced views. This is scanned from the other side by a telcvision camera and transmitted to the c.r.t. screen of the receiver, where a slotted mask is used to give the stereoscopic effect as shown in Fig. 4.

Again the scheme could be operated with an existing television system, but would not be "compatible." Its worst drawback is that it reduces the definition of the picture: the transmitted information is shared between six interlaced views and consequently each view has only one-sixth of the information that would be present in an ordinary television picture. This is the price that has to be paid for the advantage of the "all round" stereoscopic effect. Another problem is that the total number of view-elements in the composite picture could not be greater than the horizontal definition of the television system, otherwise they would not be reproduced at the recciving end. On the British television system this means that there could not be more than about 500 of them and therefore (see Fig. 4) the slotted viewing mask would only have about 85 vertical slots in it and would appear as a very coarse grating.

Actually the slotted masks are not at all good things to use in practice because they introduce a considerable loss of light. The same job can be done without loss of light, however, by lenticular screens made of transparent plastic, and it is actually these that are used in most of the three-dimensional shopwindow displays. The plastic sheet has one surface pressed into extremely fine corrugations, and each corrugation constitutes a tiny lens which performs the same function as a slot in the mask. Such screens can be made very cheaply and would only add a few shillings to the cost of television receivers.

Sipprescing Giranophone Surface Noise

Points from a Lecture by D. T. N. Williamson

THE British Sound Recording Association's convention held at the Waldorf Hotel, London, W.C.2, from 15th to 17 th May, was opened on the Friday evening with a lecture by D. T. N. Williamson on surface noise in gramophone reproduction, with particular reference to the impulsive type of noise associated with the dust particles adhering to plastic long-playing discs.

Analysis of the time and frequency functions of a typical pulse originating from this cause showed that it could be distinguished from transients in the recorded programme by the higher energy content of its spectrum above, say, $20 \mathrm{kc} / \mathrm{s}$. By inserting a highpass filter with this cut-off, pulses could be segregated and used to operate a gate circuit to remove the disturbance from the a.f. channel.

In practice the start of the pulse is indistinguishable from thermal noise and the peak of the energy burst in the high-frequency channel must be used to operate
the gate. It is therefore necessary to delay the audio signal as a whole by half the width of the pulse, i.e., up to about $150 \mu \mathrm{sec}$. This could be achieved by a low-pass delay filter of comparatively simple design, with the result that the gate pulse straddled the noise pulse and removed it, together with an equivalent clement of the wanted programme.

Mr. Williamson stated that experience had shown the ear to be tolerant of these abstractions, in individual pulses up to $250 / \mathrm{sec}$ in length, and cumulatively up to one tenth of the total duration of the programme!

At the conclusion of the lecture the system was demonstrated in operation on a high-quality l.p. recording which had been specially marked to provide an easily recognizable background. "Clicks" were completely removed, but some further work is necessary, and is in progress, to eliminate a slight low-frequency disturbance arising in the gating circuit.

Inexpensive Pickups on

Long-playing Records

By
6. H. RUSSELLA,

Assoc. Brit. I.R.E.

Simple Compensating Circuit for the Principal H.F. Resonance

THE reproduction of string tone from long-playing records is often marred by what is perhaps best described as "buzz." This unnatural quality, somewhat reminiscent of a cloud of mosquitoes in fight, is often ascribed to the methods used by the recording company, but that this may not necessarily be true will be seen from the following investigation into a particular case, involving the use of a popular medium-priced pickup.

It is well known that due to the increased compliance of the long-playing record material the highfrequency resonances of the pickup are reduced in frequency. ${ }^{1,2}$ Until recently it has not been possible to test pickups reliably under long-playing conditions, as a test record was not available. This state of affairs has now been remedied, and the results produced by this record are shown in Fig. 1, after compensation has been made for the recording characteristic. It can be seen immediately that the resonance is particularly vicious, and that it occurs at a most unfortunate frequency. It is claimed, at any rate by one recording company, that long-playing discs are recorded up to $14 \mathrm{kc} / \mathrm{s}$, and as the pickup cuts off very rapidly after the resonant frequency has been reached, it can be seen that a particularly wide frequency band is lost. What is probably worse is that the resonance gives an impression of good highfrequency response, which in fact is not present. It is suggested that here is the explanation of exaggerated string buzz, as well as such unfortunate noises as the "puffing" of the flautist, reproduced out of all proportion. Further, the resonance will amplify any distortion in the recording.

The broken curves in Fig. 1 show the effects of the usual top-cut control in a mid-way position and in the full-cut position. From these curves it can be seen that, with a pickup of this quality, the ordinary commercial radiogram will not show this fault to any marked extent, as the response would probably be similar to one or other of the broken lines in Fig. 1. Even so, the reproduction is bound to sound rather unnatural as the characteristic shows a "hole" in the response occurring between 6 and $8 \mathrm{kc} / \mathrm{s}$.

Onc cannot entirely blame the pickup manufacturers, as this is a very difficult problem to solve economically. The response can be shifted to beyond $14 \mathrm{kc} / \mathrm{s}$, at a price, and the price is not only that of the pickup, but also of the amplifier. Pickups with a resonance above $14 \mathrm{kc} / \mathrm{s}$ are not only expensive to

[^8]make, but show a very great reluctance to deliver outputs beyond a few millivolts. This means more amplification, which can be equally expensive to provide, if it is to be free from hum and noise.

The resonance could be raised to a higher frequency by increasing the stylus pressure on the record, but this is inadmissible because of its effect on record wear.

The pickup discussed here was adjusted to 7.5 grams weight, and it became apparent that the only satisfactory method of eliminating the resonance was to introduce an equal and opposite resonance. It was also obvious that the casiest way to do this would be electrically rather than mechanically, and this meant using a series-tuned circuit.

This might have been somewhat difficult in the past, but was made easy by the availability of Ferrox-

Fig. 1 Pickup response with $0.001-\mathrm{in}$ stylus, 7.5 gm weight. Tested with Decca l.p. frequency test record No. LXT2695; compensation for recording characteristic included.

Fig. 2 Photograph (fullsize) of Mullard Ferroxcube pot-core assembly, Type Y25.

Fig. 3 Circuit diagram of anti-resonance filter, for pickups described in text.

Fig. 4 Conditions as for Fig. I but with filter networks inserted.
cube pot-core assemblies. These are manufactured by Mullard and are supplied as a complete assembly including coil former. Unfortunately, no method of fixing is provided and it must be left to the individual user to decide on the best method of achieving this. These assemblies are very neat and compact; a good idea of their size and appearance can be gained from Fig. 2. They possess a very high permeability and a negligible external field. These characteristics enable quite high inductances to be obtained with comparatively small amounts of wire, and the virtual absence of an external field means that they can be used in low-level circuit positions, where it would be hazardous to use any other type of winding.
The type used for this application is designated Y25 and has a winding area of $83 \mathrm{~mm}{ }^{2} .52$ turns are required for an inductance of 1 mH , and in order to make the circuit easily tunable, an inductance of 500 mH was used, requiring $52 \sqrt{ } 500=1,144$ turns of 40 s.w.g. enamelled copper wire. The tuning condenser is a Cyldon No. 26 mica compression trimmer, $2,500 \mathrm{pF}$ maximum capacity.

Method of Connection

Handsome Q-factors can be obtained with these Ferroxcube assemblies (of the order of 200 at $10 \mathrm{kc} / \mathrm{s}$), which are clearly not required here. It is inadvisable to shunt the pickup directly, as this could cause severe distortion in the region of resonance. Further, it is necessary to shape the resonance curve of the tuned circuit so that it is, as near as possible, a mirror image of the pickup resonance curve, and this has been achieved by using the tuned circuit as part of a fre-quency-dependent potential dividing network, as shown in Fig. 3. This network is placed between the pickup and the amplifier. It results in some loss of gain which is unavoidable. Also shown in Fig. 3 is a switch for disconnecting the filter when playing 78
r.p.m. records. This method of switching results in a similar loss of gain in the case of 78 r.p.m. records; this was thought to be desirable as no violent change in volume level occurs from the change-over.

Overall Response

The results obtained from the combination of pickup and filter are shown in Fig. 4 and it can be seen that apart from a slight rise of some 2.5 db at $7 \mathrm{kc} / \mathrm{s}$, the response is substantially flat up to $8 \mathrm{kc} / \mathrm{s}$: after which it drops very steeply. Nothing but a better pickup can improve the response beyond this point. After the filter had been inserted and tested, one or two "bad" records were played through. The worst of these, an early release, which before had exhibited "buzzing" to a most objectionable extent, sounded perfectly natural and somewhat more lifelike than a good many more recent issues.
An interesting comment on the present state of the art is that, at the moment, it is easier to obtain a good high-frequency response with 78 r.p.m. records than with the long-playing variety, but, of course, with an accompaniment of needle scratch.

Short-wave Conditions

Predictions for July

THE full-line curves given here indicate the highest frequencies likely to be usable at any time of the day or night for reliable communications over four long-distance paths from this country during July.
Broken-line curves give the highest frequencies that will sustain a partial service throughout the same period.

Audio Developments

New Products Shown at the A.P.A.E. and B.S.R.A. Exhibitions

STEADY if not spectacular progress in the design of audio-frequency equipment is evident from a survey of the commercial products shown at the exhibitions organized recently in London by the Association of Public Address Engineers (May 5 and 6) and the British Sound Recording Association (May 16 and 17). Greatest activity in the immediate past would seem to have been in the design of magnetic tape recorders, though amplifiers and their control units have also shown that design in this wellestablished field is far from reaching stagnation. There is evidence of activity in loudspeaker design, particularly in line-source arrays for covering large areas out of doors; and microphone, pickups and other important accessories have all contributed food for thought.

Microphones.-A new noise-cancelling microphone (Model VC52) has been developed by Lustraphone and is designed as a close-talking microphone for use under high ambient noise conditions. It is stiffnesscontrolled over the working range and is of small dimensions compared with the wavelength of the upper limit of frequency. Two factors contribute to the high discrimination against noise, a polar diagram with a high front-to-back ratio and a sensitivity which falls off steeply with distance from the source. Its small size permits a variety of mountings, one of which is from an adjustable bracket attached to the operator's headphone set. Also new to the Lustraphone range is a ribbon microphone Model VR/53 with a frequency response up to $14,000 \mathrm{c} / \mathrm{s}$.

Pickups.-An exhaustive investigation into the conditions under which pickups are required to perform when tracking long-playing records has been undertaken by Cosmocord in collaboration with the Decca Record Company and it has been established that pickups may be called upon to respond to accelerations as high at 2,000 times the acceleration due to gravity at a frequency of $10,000 \mathrm{c} / \mathrm{s}$. Accordingly, Cosmocord have produced for manufacturers an entirely new range of "Hi-g" pickups and cartridges which can be relied upon to track not only all existing l.p. records, but any which may be produced in the future under the existing limitations of groove spacing and high-frequency cut-off. This performance has been achieved without exceeding a weight of 10 gm on the stylus. In the Type HGP33-1 turnover cartridge, which is typical of the series, an increase in compliance of the movement has permitted the use of a push-in sub-miniature stylus which can be replaced without special tools. With a simple two-element RC equalizing network a response flat from 50 to 13,000 c / s is obtained with only a 5 db drop at $20,000 \mathrm{c} / \mathrm{s}$.

The prototype of a new moving-iron pickup was shown by A. R. Sugden with an armature mass of 10 milligrams and a high-frequency resonance of 15 to $20 \mathrm{kc} / \mathrm{s}$ when playing plastic long-playing or nitrocellulose direct recording discs.
Pre-amplifiers, Control and Feeder Units.-A versatile "Master Control Unit" for microphone,
recorded or radio inputs has been developed by the Lowther Manufacturing Company. It employs three ECC40 valves and in addition to standard equalization for the principal disc recording characteristics, has

Above: Lowther "Master Control " pre-amplifier unit, providing compensation for four recording characteristics together with comprehensive tone controls.

Headphone mounting for Lustraphone noise-cancelling microphone and (below) sensitivity/distance and polar characteristics at $1000 \mathrm{c} / \mathrm{s}$.

independent bass and treble controls giving continuously variable rise and fall up to 30 db , and separate variable-slope filters giving a "roll-off" at alternative fixed starting frequencies of 5,7 and 9 kc / s. That the unit does perform according to specification was proved by a demonstration on the stand using an Industrial Electronics automatic cathode-ray curve tracer, which showed that operation of the controls was not accompanied by any secondary disturbances near the critical cut-off frequency. Not the least interesting feature of this unit is the ingenious parallel-line graduation of the front panel which serves all the controls. A neat AM-FM tuner unit covering $85-100 \mathrm{Mc} / \mathrm{s}$ has also been added to the Lowther range.

Designed for stable high-quality reproduction from long-distance short-wave stations as well as mediumwave stations, the new S6BS radio feeder unit made by C. T. Chapman (Reproducers) has two stages at

Wharfedale reproducer with triple-unit loudspeaker system.
i.f. with switched tertiary windings giving bandwidths of 5,7 and $10 \mathrm{kc} / \mathrm{s}$. Delayed, amplified a.g.c. is applied to the r.f. and frequency-changer stages as well as to the two i.f. valves, and the chassis is fully tropicalized.

Amplifiers.- The Type 915 amplifier recently introduced by Pamphonic Reproducers has been designed for research and measurement work as well as for high-quality reproduction. It has a frequency response of $15 \mathrm{c} / \mathrm{s}$ to $150 \mathrm{kc} / \mathrm{s}, \pm 1 \mathrm{db}$ and the distortion at the maximum output of 15 watts is claimed to be 0.05 per cent at $1,000 \mathrm{c} / \mathrm{s}$. Feedback is designed to provide zero output impedance.

For high-quality p.a. applications G.E.C. have introduced a 30 -watt amplifier of robust design (BCS2430) with tetrodes in Class AB1 push-pull and using a neon stabilizer for the screen feed resistance. Three fader-connected inputs are provided as well as the usual tone controls, and there is a test meter with switching for all valve cathode currents. A panel mounting version (BCS2430/2) of this amplifier is available.

The Leak TL/ 12 amplifier and pre-amplifier control unit are now available as a combined portable unit, suitable for p.a. work. This unit is illustrated together with the VS radio tuner unit, which provides bandwidths of 6,12 and $24 \mathrm{kc} / \mathrm{s}$.

Rogers Developments have introduced a mediumpriced "RD Baby de Luxe Mark II" amplifier to supersede their earlier "Baby" and "Junior" amplifiers. It has a larger output transformer and more conservatively rated h.t. supply. At $1,000 \mathrm{c} / \mathrm{s}$ harmonic distortion is 0.25 per cent at 8 watts output, and 0.6 per cent at 12 watts. Hum and noise have been reduced to -85 db referred to 8 watts.

An unusual amplifier-loudspeaker unit is now available from Reproducers (Electronic), Ltd., makers of the "Truchord" record reproducer. It consists of the main amplifier from this instrument together with a 10 -inch loudspeaker and forms a nucleus to which the enthusiast can add auxiliary equipment of his own choice.

Left: Portable ver-

Loudspeakers.-Developments in loudspeakers, as exemplified by these two exhibitions were for the most part confined to minor improvements in existing and already well-known units. Wharfedale, however, were showing a new wide-range reproducer in which the frequency spectrum is divided between three units. A type W15/CS unit in a 9 -cu ft vented enclosure covers frequencies up to $800 \mathrm{c} / \mathrm{s}$. Above this frequency, a "Super $8 / \mathrm{CS}$ " is fed from the halfsection crossover filter, and the extreme top is reinforced by a "Super 5" unit which is shunted across the mid-frequency unit with a series capacitor to restrict the input below $5 \mathrm{kc} / \mathrm{s}$. A volume control is connected across the h.f. unit to provide a balance suited to programme conditions.

The new "Magneta-Decca Radiator" produced by the Magneta Time Company is a vertical line-source column loudspeaker and has a radiation characteristic designed to give reasonably uniform sound intensity (84 phons) over an elliptical area approximately 250×180 yds at the front and 85×60 yds at the back, with an input of 75 watts.

Gramophone Motors.-The new transcription-type 3 -speed gramophone motor, Model 301, made by Garrard is of the induction type driving a heavy stainless steel turntable through a friction drive. The motor is fully floating on a spring suspension and its power consumption is 16 watts. Speed fluctuation ("wow") is less than 0.2 per cent. An unusual feature for a motor of this type is the provision of a speed control over narrow limits, so that pitch can be accurately adjusted when desired. A large-diameter disc under the turntable forms an eddy-current brake in conjunction with a small permanent magnet, the position of which can be adjusted to vary the retarding torque. Speed limits on $33 \frac{1}{3}, 45$ and 78 r.p.m. (nominal) are $32.6-33.9,44-46$ and $76-80$ r.p.m. respectively.

Magnetic Tape Recorders.- The multi-channel airport recorder designed by Thermionic Products is an outstanding example of an important application of magnetic recording in air traffic communications. On

a 0.7 in wide tape running at $3.75 \mathrm{in} / \mathrm{sec}$, fourteen channels can be recorded simultaneously for four hours on each reel of tape. Automatic switching is provided to ensure continuity, and to transfer the recording to the standby unit in the event of any failure in the system. Coded time signals from an electrically wound spring clock are superimposed on each channel so that the time of any message can be established with accuracy.

In another sphere, the new E.M.I. Type BTR/2 portable equipment is equally imposing. In performance it is the same as the studio version, which is widely used by broadcasting and recording organizations, and gives a response at a tape speed of $15 \mathrm{in} / \mathrm{sec}$ level within $\pm 2 \mathrm{db}$ from 50 to $15,000 \mathrm{c} / \mathrm{s}$.

The production by M.S.S. of a new tape mechanism of their own design is an event of more than usual interest. Basically it follows established practice for high-quality machines designed for tape speeds of $7 \frac{1}{2}$ and $3 \frac{3}{4} \mathrm{in} / \mathrm{sec}$ and the performance figures quoted for the higher speed are $60-10,000 \mathrm{c} / \mathrm{s} \pm 3 \mathrm{db},<2 \frac{1}{2}$ per cent total harmonic distortion, "wow" <0.2 per cent, signal/noise ratio 50 db . Several types of complete
machine are available, including models designed to work in conjunction with M.S.S. disc recorders for transcription work. Variations from standard specification which can be supplied to order include synchronous drive motor, tape speeds of $7 \frac{1}{2}$ and 15 , or $1 \frac{7}{8}$ and $3 \frac{3}{4} \mathrm{in} / \mathrm{sec}$, automatic back spacing and reverse drive for dictation purposes, and remote operation with foot control.

The range of tape recorders made by C.J.R. Electrical and Electronic Development, which incorporate a special version of the Bradmatic tape desk, covers every possible requirement for professional use. Three half-track heads are standard in all models, enabling the recording to be monitored while in progress. In addition to the portable models a console (Type D6) with a 10 -watt push-pull amplifier and accommodation for $9 \frac{3}{8}-\mathrm{in}$ diameter spools is available.

M. S.S. magnetic tape recorder, Type PMR/3.

British Ferrograph have produced a revised version (Model 2A) of their well-established portable recorder with synchronous capstan motor, endless loop cassette attachment and facilities for superimposing commentaries on previously recorded material. The new machine accommodates $1,750-\mathrm{ft}$ reels and is fitted with a redesigned sustained-peak monitoring meter, giving easily interpreted readings.

In addition to the portable "Reporter" tape recorder with which Grundig (Great Britain) entered the market, there is now a handsome console (700 C). As in the "Reporter" control is by push buttons and there is provision for inductive pickup from a telephone instrument, as well as normal inputs from microphone or radio. All Grundig instruments are now sold with a $25-$ minute demonstration tape which includes a variety of celebrity recordings. Possibly of greater interest to the technically minded is the fact that a test tape (TB53) with a range of standard frequencies is also now available at 21 s .

The redesigned Truvox Mark III tape mechanism is now in production and is notable for the clean and simple mechanical design. The capstan flywheel bearing is exceptionally long and the main drive motor is flexibly suspended.

In the "Tape-Riter" office dictating machine (London Office Machines, Ltd.) the advantages of standard $\frac{1}{4}$-in tape, from the point of view of quality of reproduction, are exploited without incurring the normal difficulties of threading and loading, by the use of self-contained cartridges which, in addition to supply and take-up reels, contain a tape footage indicator.
A wide range of cinema-film edge coatings, as well as 35 mm and 16 mm film fully coated between perforations, are now available from the Minnesota Mining and Manufacturing Company, who have also produced an improved 0.25 -inch tape (MC2-111)
(Continued on p. 305)

and UHF

For work in the higher frequency ranges Brimar types 5763 and I2AT7 are becoming increasingly popular. These performance details will give you some idea of their scope.

Type 12AT7

This high-slope double triode with separate cathodes is an excellent frequency-changer, oscillator, grounded grid or grounded cathode RF amplifier up to the $460 \mathrm{Mc} / \mathrm{s}$ band.

Frequency changer. With a conversion conductance of $2.5 \mathrm{~mA} / \mathrm{V}$., the $12 \mathrm{AT7}$ at $430 \mathrm{Mc} / \mathrm{s}$. gives a conversion gain of 5 db . with a noise factor of 10 , thus offering distinct advantages over a diode mixer at these frequencies.

Oscillator. Up to $500 \mathrm{Mc} / \mathrm{s}$. With lines as the tuned circuit, the two halves in push-pull will deliver approx. 2 watts RF at $400 \mathrm{Mc} / \mathrm{s}$.

Grounded grid R.F. amplifier. In push-pull grounded-grid operation the input impedance is approx. 300 ohms, thus matching to 300 ohm balanced feeder is simple. A single-ended amplifier using one half only gives at $200 \mathrm{Mc} / \mathrm{s}$. a gain of about 10 db . and 6 db . at $400 \mathrm{Mc} / \mathrm{s}$. Operation of both sections in Push-Pull gives an additional gain of $2-3 \mathrm{db}$.

Grounded cathode R.F. amplifier. Feeding a grounded grid stage, a gain of 14 db is obtainable at $200 \mathrm{Mc} / \mathrm{s}$., with a noise factor of 7 .

SEND FOR FREE

DATA SHEETS to the Publicity Department

Tracking 2000 g at 10 grammes maximum stylus pressure

The listening public is inclined to take technical achievements for granted -to assume, for instance, that the increasingly exacting requirements of microgroove records can automatically be met by pick-up manufacturers. This is not the case. There is nothing automatic about it. The technical progress made by record manufacturers is, in effect, a challenge to pick-up manufacturers-a challenge which Cosmocord, whose slogan "Always well ahead" really does mean something, are always ready to take up. Sometimes the record manufacturers set us a problem, to which the solution is "impossible" and therefore takes quite a time to provide.

Such a problem is involved with regard to pick-up tracing capabilities which now have to be of a substantially higher order than those for 78 r.p.m. records, and are likely
 to become even more critical.

Cosmocord, with the very helpful co-operation of the Decca Record Company, have recently made a detailed examination into the optimum tracking requirements that could arise in modern types of microgroove records. This was done in order to establish a basis for the design of pick-ups that would not only satisfy the requirements of all records at present available to the public, but if possible anticipate future developments within the limits as set out in the recently published British Standard Specification (B.S.1928: 1953).

THREE FACTORS

The three important factors that had to be considered by Cosmocord in designing such a pick-up were minimum groove width, maximum lateral displacement and maximum stylus tip acceleration.

The minimum groove width as laid down by the British Standard Specification is .002 in . The conditions existing in a record giving up to 30 minutes playing time per 12 in . side are well demonstrated in the accompanying scale drawings. For simplicity's sake, the groove angle has been shown as 90° and the radius at the bottom of the groove has been left out, as at .0003 in. maximum it has no effect. Three pick-up Acos Crystal Devices are Protecte.' by Patents and Patemt Applications in Gl. Britain and Other Countries
stylus radii are shown, the nominal .001 in . radius (Fig. 1) and its upper and lower limits of .0012 in . and .0008 in . (Figs. 2 and 3 respectively) according to British Standard Specification. It can be seen that the .001 in . radius has .0004 in . wall above its point of contact, whilst the .0012 in . radius has no more than .0002 in . This does not take into account the pinch effect which can reduce the margin by .0002 in . at $5,000 \mathrm{c} / \mathrm{s}$.

PRACTICAL CONSIDERATIONS

In order to arrive at maximum possible displacement, some assumptions have to be made that are dictated by practical considerations. Working on the basis of 200 grooves per inch the maximum possible displacement (d) is .003 in . At a frequency of $40 \mathrm{c} / \mathrm{s}$. this displacement corresponds approximately to a maximum velocity of $2 \mathrm{~cm} / \mathrm{sec} . \quad(\mathrm{v}=2 \pi \mathrm{fd})$.

Accepting the recording characteristics of the Decca Long Playing test record No. LXT 2695 as typical for commercially produced long playing records, the maximum velocity and corresponding acceleration at $10,000 \mathrm{c} / \mathrm{s}$. can be calculated. According to the record specification the recording pre-emphasis at $10,000 \mathrm{c} / \mathrm{s}$. relative to $40 \mathrm{c} / \mathrm{s}$. is +24.4 dbs . and this gives a velocity of $31.6 \mathrm{~cm} / \mathrm{sec}$. and a corresponding displacement of .0002 in . $\left(\mathrm{c}=\frac{\mathrm{v}}{2 \pi \mathrm{f}}\right.$). It further follows that expressed in gravitational units the acceleration at $10,000 \mathrm{c} / \mathrm{s}$. may be as high as $2000 \mathrm{~g}\left(\mathrm{~g}=\frac{\mathrm{et}^{2}}{10}\right.$, where $\mathrm{e}=$ displacement $=.0002 \mathrm{in}$. and $\mathrm{f}=10,000 \mathrm{c} / \mathrm{s}$. .
WHAT OF THE FUTURE?
The examination, as can be seen even from this simplified statement, has brought to light conditions that appear to be incredible at first sight. They are, however, far from being purely hypothetical and it may be only a question of time before they appear on commercially produced records. Even now there are a few odd records on the market which come very close to these limiting conditions.

It can be seen that the problem set by the record manufacturers in this matter was a formidable one. Cosmocord have answered it so completely with their Acos " Hi-g" series of pick-up cartridges that they already meet, here and now, any likely future development of gramophone records within the B.S. 1928:1953 specification.

always mell abead

Grundig 700C console tape recorder with $4 \frac{1}{2}$-watt output.
which shows an improvement of 2 to 5 db in sensitivity and 6 db in maximum output.

Erasure of complete spools of tape in a $50-\mathrm{c} / \mathrm{s}$ alternating field is often more effective and convenient than erasure by a separate head at bias frequency, and Leevers-Rich have for some time marketed an erasing machine for this purpose. They now offer a modified version with an extra field coil which will accommodate all spools from $3 \frac{1}{2} \mathrm{in}$ up to the large single-sided platter type as used by European broadcasters.

BOOKS RECEIVED

Monographs for Students. A series intended for general reading in the first two years of a degree course, or for students taking the Higher National Certificate in Applied Physics.
"Fundamentals of Thermometry" by J. A. Hall, B.Sc.,
A.R.C.S., D.I.C., F.Inst.P. Pp. 48; Figs. 13.
"Practical Thermometry" by J. A. Hall, B.Sc., A.R.C.S., D.I.C., F.Inst.P. Pp. 51: Figs. 8.
"The Magnetic Circuit" by A. E. de Barr, B.Sc.,

F.Inst.P.

"Soft Magnetic Materials Used in Industry" by A. E de Barr, B.Sc., F.Inst.P. Pp. 62; Figs. 35.
Price 5s each. Published by the Institute of Physics, 47. Belgrave Square, London, S.W.1.

Antennentechnik, by G. C. Oxley, A.M.I.E.E., and Alfred Nowak, Dipl. Ing. Theoretical and practical aspects of aerial design with special emphasis on dipoles for television and arrays for short wave communication. Pp. 234; Figs. 257. Fachbuchverlag Siegiried Schutz, Hanover, Germany.

Einfuhrung in die Theorie der Hochfrequenz-Bandfilter by Richard Feldtkeller. Mathematical treatise on the design of bandpass filters. Pp. 196; Figs. 95. Price DM 16. S. Hirzel Verlag, Stuttgart, Germany.

Differential and Integral Calculus by Philip Franklin Ph.D. Introductory treatise with numerous examples and exercises. Pp. 641; Figs. 367. Price in U.K. 48s. McGraw-Hill Publishing Company, 95, Farringdon Strect, London, W.C.2.

TV Sweep Alignment Techniques by Art Liebscher. Adjustment and fault tracing with numerous c.r. oscillograms. Pp. 123; Figs. 66. Price $\$ 2.10$. John F. Rider, Publisher, ${ }_{480}{ }^{\text {Pp, C }}$, Canal Street, New York, 13

PLASTICS

Radio Mouldings at the Olympia Plastics Exhibition

AMONG the wide range of plastic materials and mouldings shown at the recent Plastics Exhibition organized by British Plastics at Olympia were many used by the radio industry.

One of the most impressive exhibits was a giant parabolic aerial reflector measuring 14 ft in diameter and intended for use in the 9 - to $11-\mathrm{cm}$ waveband. It has been produced by F. G. Miles, Ltd., of Shoreham-by-Sea for the Cossor Mark VI airfield radar. Moulded in phenolic asbestos, it is said to be non-corrosive and has such a good strength-to-weight ratio that scanners of this kind can be constructed in approximately half the weight of an equivalent all-metal structure. The necessary conducting surface is provided by spraying the concave face with metal protected by a coating of paint.
The plastics production of E. K. Cole, Ltd., now includes moulded instrument knobs, various kinds of r.f. and a.f. coil formers and some terminal and multi-plug inserts. A black phenolic moulding is used for the r.f. coil formers which take the form of small $\frac{1}{4}$-in and $\frac{1}{2}$-in (approximately) diameter formers with fixing feet and having internal threads for a dust-iron core.

A lesser-known activity of the G.E.C. is the production of plastic mouldings of various kinds, many having radio applications. These include valve bases, c.r. tube bases, coil formers and complete radio cabinets.

Telcon plastics, mainly Telcothene, were well in evidence, while Redifon and Radio Heaters demonstrated sealing and welding of plastics by means of radio-frequency.

Printed circuitry as applied to the construction of an Ardente hearing aid was shown by Lacrinoid Products, the ctched foil process on a plastic base being employed.

Giant parabalic reflector moulded in phenolic-asbestos for a Cossor airfield radar. The hole is for alignment purposes during installation and is normally covered by a metal disc.

Wireless World Television Receiver

Part 3.-Construction

AFEW changes are needed in the apparatus associated with the time-bases, mainly in the power unit and the focus-coil unit.

The power unit originally had an output of 480 V but this is now too great. It is reduced to some 400 V by the simple expedient of omitting the $4-\mu \mathrm{F}$ reservoir capacitor. The circuit then works with a choke input and provides a smoothed output of some 400 V which is dropped to 300 V in the focus-coil circuit. The arrangement is shown in Fig. 5. The focus circuit is arranged to minimize the variation of voltage drop across it with operation of the control and is only possible because the total current of 200 mA is over twice that needed by the focus coil. This coil is the one of the original design but requires a higher current because of the higher operating voltage of the tube.

The details of this focus coil are given in Fig. 4 which is repeated from the original description since this is now out of print. The type of focus coil employed is in no way critical, however, and there are suitable commercial types; as an alternative, per-manent-magnet units are now available and would normally be preferred because they are not subject to a warming-up drift.

Some alteration to the values of \mathbf{R}_{1} and \mathbf{R}_{2} may be needed in some cases, depending on the tube used, the position of the focus coil and its design, for the range of control afforded by R_{3} is not large. Because the resistance of the focus coil varies with temperature
there is inevitably a small change of focus when the set has been in operation for some time.

The proper condition is to have the "cold"" and " hot " settings of R_{3} about equally on either side of its mid-point and in some cases an adjustment to \mathbf{R}_{1} and \mathbf{R}_{2} may be needed to achieve this and at the same time to secure the output h.t. line of 300 V . The value of R_{22} governs the focus control setting. A reduction in its value shunts more current away from the coil and R_{4} so that the slider of R_{3} must be moved towards the coil end to maintain focus. The value of R_{1} mainly governs the h.t. voltage and has little effect on focus.

The values shown in Fig. 5, with R_{1} zero, are suitable for the G.E.C. 6075A tube and probably for most other triode types. A tetrode gun, such as the Mullard MW 31-16, however, calls for a smaller focus-coil current. With such a tube its first anode should be joined to the $+\mathrm{HT}_{1}$ point.

If a permanent magnet is used for focusing L_{1}, R_{1}, R_{2}, R_{3}, R_{4} and C_{2} are to be omitted and replaced by a simple dropping resistor of $500-\Omega 25-\mathrm{W}$ rating.

If a tube with an ion trap is used, an ion-trap magnet suited to the tube must be employed and the tubemaker's recommendations as to type of magnet and method of adjustment should be followed. Proper adjustment is important not only to secure the best results but because the tube may be damaged by incorrect adjustment.

The magnet is normally placed over the tube so

Fig. 4. Details of a suitable focus coil are given here. The core tube is $1 \frac{1}{2}$-in long to give $a \frac{1}{9}$-in air gap at the front end. The spacing bars can be made from 5 -in wire nails. The coil has a resistance of 1,000 ohms.

that the arrow on it agrees with the line marked on the tube base and sufficiently forward for it to be in front of the gun and over the trap. The position is adjusted by sliding it backwards and forwards, and rotating it slightly, to give the brightest raster. Initially, this must be done with a very dim raster, but the final adjustment can be done with one of normal brightness.

The brightness-control circuit has been altered slightly from the original in that the values of the resistors have been reduced to enable a wirewound potentiometer to be used.

One change only is needed in the receiver unit and that only in the superheterodyne model. Because of the different supply voltage, R_{22} (the oscillator feed resistor) should be dropped from $100 \mathrm{k} \Omega$ to $82 \mathrm{k} \Omega$.

The time-base circuit of Fig. 1 has been put into practical form in two different ways-one as a modification to the existing time-base chassis of the original receiver and the other as a new design. In the former, both chassis took the form of trays with open tops and bottoms and cross shelves for the valves. The open sides were mounted to face each other with a metal plate between them for screening. The outer chassis, for the line time base, was hinged at the bottom to open outwards, while the inner chassis was hinged at the back so that the whole unit could be tilted on one corner clear of everything else.

This form of construction proved very satisfactory, but it was found that the frame time-base unit, which remained always in a vertical position, was much less convenient to work on than the line time-base chassis, which opened out into a horizontal position. In the new design, therefore, both chassis will open out horizontally, one being hinged to the other as shown in the photographs.

To minimize radiation, the line time-base must be completely screened and this is achieved by using a

Here the frame time-base is shown together with the size of its chassis and the position of its shelf.

Fig. 5. Circuit diagram of the power unit with focus and brightness control connections. The output of the receiver unit is taken directly to the cathode of the c.r. tube and through a $10-k \Omega$ resistor to the frame time-base unit.

Fig. 6. Details of the bobbins for the transformers r_{1}, T_{2} and T_{3}.

DIMENSIONS FOR FIG. 7

(inches)

	A	B	C	D	E	F	G	Stack
$\begin{aligned} & \mathrm{T}_{1} \mathrm{~T}_{1} \\ & \mathrm{~T}_{2}^{2} \end{aligned}$				$\begin{gathered} 1.7 \\ 2_{i}^{3} \\ i_{1}^{3} \end{gathered}$		$\begin{gathered} 4 \\ \substack { 16 \\ \begin{subarray}{c}{116 \\ 16{ 1 6 \\ \begin{subarray} { c } { 1 1 6 \\ 1 6 } } \end{gathered}$		16 1 1 1

chassis with four closed sides. Large holes are cut in top and bottom and covered with perforated zinc and one whole side is made of this material. This is essential to obtain adequate ventilation.

Ventilation holes are also provided in the top and bottom of the frame chassis but are less essential, since the whole of one side is normally open.

As in the previous design, the frame unit contains the sync separator as well as the frame time-base, while the line unit includes the e.h.t. supply. The performance is not critically dependent on the layout. Most details can be seen from the photographs.

Since \mathbf{R}_{41} is at up to $2-k V$ peak with respect to the chassis, its internal insulation is not relied upon and it is mounted on the chassis by means of an insulating bush. For the same reason it should be provided with an insulating knob in case its spindle should become live. This is actually unlikely, for the internal insulation is quite good.

The metal rectifier D_{4} is supported by an insulating bracket, for although it has an insulated spindle, this will withstand only 500 V or so and again the peak potential may be up to 2 kV .

The coil L_{1}, being wax-dipped, must be kept away from anything hot.

It is essential that both ends of D_{3} and anything connected to it should have at least one-inch clearance from anything else, including the chassis, and that there should be no sharp points or edges on the metal work. All the soldered joints here should be nicely rounded blobs of solder. Great care is needed to avoid corona.

If it is found that the line synchronizing is poor in that vertical lines are ragged, the trouble is almost certainly due to corona, for the discharge results in the time-base being tripped erratically. If the corona persists when all sharp points have been buried in
balls of solder an improvement can often be effected by painting the relevant parts thickly with shellac varnish. It is necessary to build up a very thick layer by applying many coats and allowing it to dry between them.

Corona occurs when the electric field in air is excessive and it can be avoided only by reducing the field strength below the critical value. For a given voltage on a conductor this requires that the radius of curvature be increased, hence the need for large smooth blobs of solder. However, the field strength in air can also be reduced by moving the air further from the conductor, which is what is done by painting the conductor with an insulating varnish.

If the time bases are built on the original chassis, it is not possible to include the frame-output transformer on the chassis, but it is quite satisfactory to mount it with R_{20} externally. The old line chassis is also not big enough for everything. What was done in a conversion, therefore, was to bolt on a new extension at the back to take the multivibrator.

The various special components are fully described in the drawings and, for the sake of completeness, details of some of the original parts which are retained are repeated here.

The three transformers, $\mathrm{T}_{1}, \mathrm{~T}_{2}$, and T_{3} are wound on formers of the same general form but different sizes as shown in Fig. 6. The blocking-oscillator transformer T_{1} has a primary and secondary each of 3,000 turns of No. 40 enamelled wire with three layers of thin paper between windings for insulation. The coils are scramble wound. The core comprises a $\frac{11}{16}$-inch stack of M. \& E. No. 74 laminations, 0.014 -inch thick of Silcor 3 (or 1). The E and I parts are butted together without a gap and the core is held by the usual bent channel metal. A tag board is conveniently screwed to this frame.

The frame output transformer T_{2} has the secondary for its inside winding and this comprises 350 turns of No. 22 enamelled wire evenly layer wound with a turn of waxed paper between layers. The winding must be tight. There should be six layers of waxed paper outside the secondary. The primary has 5,250 turns of No. 38 enamelled wire scramble-wound. It is advisable to put on a turn of waxed paper about every 1,000 turns.

Before winding, the end cheeks of the former should be liberally provided with $\frac{3}{16}$-inch holes to permit the entry of wax in the subsequent impregnation.

The core comprises a 1 -inch stack of M. \& E. No. 93A Silcor 3, 0.014-inch laminations. The T and U pieces are assembled for a butt joint with a 0.003 -inch air gap. The core is clamped by four stout strips of steel and 4-BA bolts which are long enough to provide the mounting. They should be provided with rubber grommets where they pass through the chassis so that the mounting is somewhat resilient. Because of the high magnetizing current, this transformer is especiaily liable to produce an audible buzz. The resilient mounting is desirable to prevent the chassis from being set into vibration and acting as a sounding board. The wax dip is necessary to prevent movement of the windings.

The whole component, when finished, should be immersed in melted paraffin wax at a temperature of about $100-120^{\circ} \mathrm{C}$ and left there until all bubbling ceases. This may require up to two hours. If a thermometer is not available the wax can be melted in a double saucepan. This will ensure that the temperature does not exceed $100^{\circ} \mathrm{C}$ and if the water
in the outer saucepan is kept boiling the wax temperature will not be very far below it.

When all bubbling has ceased, lift the transformer out of the wax and allow it to drain. When the wax on the outside starts to set, give it another quick dip. Build up a thick exterior coating by a succession of quick dips, each time allowing the wax to set before re-immersing.

The line-linearity transformer T_{3} has a winding of 1,000 turns of No. 36 enamelled wire tapped at 333 turns from the start. On the circuit, the start is labelled 3, the tap 2 and the end 1 so that 666 turns come between 1 and 2. It is scramble-wound. The core is a $\frac{1}{4}$-inch stack of M. \& E. No. 74, Silcor 3, 0.014 -inch laminations, butt-jointed, without a gap. The core is held by the usual bent channel metal. The whole transformer must be insulated to withstand 2 kV from the chassis. It must also be acoustically insulated to prevent an audible magnetostriction whistle. The two forms of insulation are obtained together with sponge rubber.

The case is made of tinplate to the dimensions of Fig. 7 with the joints soldered together. A flat bottom plate is rivetted to the true bottom for mounting. A rubber sponge measuring 2 in $\times 5$ in $\times 3 \frac{1}{2}$ in is cut into two pieces 2 in $\times 2 \frac{1}{2}$ in $\times 3 \frac{1}{2} \mathrm{in}$. Each of these has a small piece dug out of the middle to take the bobbin of the transformer but not the core. The transformer is placed between the two pieces of rubber with the leads coming out together. The whole is then forced into the case, the leads are passed through a grommet in the lid and the lid is placed on and secured with a touch of solder.

The e.h.t. coil L_{1} is wound on a cylinder of hard wood of 1 -inch diameter and 17 -inch long, Fig. 8(a). One solder tag for the start of the winding is held to the former by a wood screw close to one end. The other end is drilled for two wood screws for mounting.
Drill two series of circumferential holes around the former to take steel pins (such as lengths of knitting needle) with a tight fit. The inside faces of the pins are to be $\frac{3}{8}$-inch apart and one of them ${ }_{16}^{7}$ inch from
the end of the former. The rows of holes should be $\frac{3}{8}$ inch plus the thickness of the pin apart. There must be 12 pins in each row.

The winding comprises 1,220 turns of No. 30 enamelled wire in 50 layers of approximately 26 turns per layer. After one layer, give it a thin coat of shellac. Then put in a cotton spacer by winding No. 36 sewing cotton round pins as in Fig. 8(b) so that a thread of cotton lies across the winding by each pair of pins. Continue winding with cotton interleaved between all layers and shellac each winding lightly as it is done.

It is important to fill each layer with wire irrespective of the actual number of turns. If one layer is short, the next layer will tend to push the cotton down. Towards the end, the turns per layer will tend to become fewer because of the pins pulling inwards by the tension of the cotton.

When wound, attach a connecting lead to the end

Fig. 8. The former dimensions and coil position for the e.h.t. coil are shown at (a) and the way in which the interlayer cotton is wound at (b).

Fig. 7. Details of the case for the linescan linearity-correcting transformer are given here.

The line time-base chassis is the same size as the frame time-base chassis, The valves are mounted on a bracket, as shown in this photograph.

and tie off firmly on the outside of the winding. Leave to dry.

Then quick dip in paraffin wax. Drain thoroughly after each immersion at first so that the wax does not penetrate between the layers to any extent. When the sides are covered, build up the wax thinly. Then immerse only the outside of the coil while rotating the coil by its former to build up a tyre of wax about $\frac{1}{8}$-in thick over the outer periphery.

An error occurred in Part 2 which must be corrected. The value of C_{21} was given as 200 pF ; it should be 50 pF .

LIST OF PARTS

$\begin{array}{ll}\mathrm{C}_{1} & 32 \mu \mathrm{~F}, 500 \mathrm{~V} \text {, electrolytic. } \\ \mathrm{C}_{2} & 50 \mu \mathrm{~F}, 150 \mathrm{~V} .\end{array}$ Dubilier Type CT.
Dubilier Type BR.
Dubilier Drilitic BR850.
$\mathrm{C}_{3}^{2}, \mathrm{C}_{4} 8 \mu \mathrm{~F}, 500 \mathrm{~V}$.
$\begin{array}{lll}\mathbf{R}_{1} & \text { See text. } \\ \mathbf{R}_{2} & 2.5 \mathrm{k} \Omega, 5 \mathrm{~W} \text { (see text). Welwyn. }\end{array}$
$\mathbf{R}_{3} \quad 500 \Omega, 5 \mathrm{~W}$, Linear, wire-wound. Reliance Type
$\mathbf{R}_{4} \quad 1.2 \mathrm{k} \Omega, 6 \mathrm{~W}$ (sce text).
$\begin{array}{lll}\mathbf{R}_{5} & 1 \mathrm{k} \Omega, 3 \mathrm{~W} \\ \mathbf{R}_{6} & 18 \mathrm{k} \Omega, & 6 \\ \mathbf{R}^{2}\end{array}$
T.W/1.

Welwyn.
Welwyn $10 \mathrm{k} \Omega, 5 \mathrm{~W}$, linear, wire-wound. Reliance Type (Resistor ratings are minimum ones).
$\mathrm{V}_{1}, \mathrm{~V}_{2}$ IW4 500 (or GZ 32, but transformer must then have $5-\mathrm{V}$ winding).

Mullard.
T_{1} Primary 200/250 V, Secondaries 500-0-500 V,
$\begin{array}{ll} & 250 \mathrm{~mA} ; 4 \mathrm{~V}, 5 \mathrm{~A} ; 6.3 \mathrm{~V} 8 \mathrm{~A} . \\ \mathrm{L}_{1} \quad & \text { Partridge } 4204 \mathrm{~A}, 250 \mathrm{~mA}, 185 \Omega .\end{array} \quad \begin{aligned} & \text { Partridge } 4204 \mathrm{~B}\end{aligned}$

R.F. S©LIEIRING

Petrol Tank Production by Radio Heating

A NEW radio-frequency plant designed and built by Redifon for Vauxhall Motors enables all the fittings for a petrol tank to be soldered on by one operator in under one minute. Soldering by hand of such items as the tank filler, drain plug, draw-off pipes, etc., may take up to 10 minutes by three or four operators, according to the complexity of the work. Thus a very considerable saving in time and labour is effected by this machine.

The sequence in production of the petrol tank has been modified and the parts mentioned are soldered in position before the tank is shaped on the bending machine and the Redifon machine is thus designed to handle flat sheets.

It is semi-automatic and the operator merely loads a sheet on to the work carriage, places the items to be soldered in position, applies solder and flux and initiates the movement of the carriage, and hence the soldering cycle, into the machine.

Lifting the sheet off the work carriage, timing of the soldering and cooling cycles and ejection of the finished plate is automatic, but the operator can immediately arrest all motion should it be necessary.

Redifon semi-automatic r.f. soldering plant for motor vehicle petrol tank fittings.

TELEVISION BANDWIDTH COMPIESSION

IN one chapter of his new book on information theory, * D. A. Bell puts forward an interesting suggestion for reducing the bandwidth required by television transmissions. Instead of allowing the sidebands of the transmission to straggle out across the frequency spectrum, it should be possible, he says, to interlace them all into a tight bunch, occupying a very narrow band, by using heterodyne oscillators to shift the various sideband frequencies. This would be possible because the sideband frequencies of a television transmission occur at harmonics of the picture repetition frequency, so there are regular gaps between them which could be occupied by the shifted sidebands.

The interlacing process could only be carried so far because movement in the television picture causes the individual sideband frequencies to broaden out into bands, and sufficient space would have to be allowed for this "breathing in and out." In this respect, the scheme amounts to a system of information coding which would make the bandwidth requirement dependent more on the rate of transmission of real information (changes in the picture) than on just the maximum possible detail in a static picture (represented by the $3-\mathrm{Mc} / \mathrm{s}$ chequer-board pattern).

The chapter in which these ideas are discussed is concerned with practical applications of information theory in telecommunications, and as such will be the one of most direct interest to radio people. The remaining six chapters are mainly theoretical and deal with such topics as the binary digit measure of information, the idea of entropy, bandwidth and signalling speed, signal-to-noise ratio, coding and filtering. As a whole the book amounts to a comprehensive summary of all the papers that have been written on information theory, and is, in fact, probably the first real book on the subject. The compilation of information has been done very well and the author has a clear and easy style, but the book is not intended as an introduction for beginners, and is only recommended to those who already have some familiarity with the subject.

[^9]

Providing technical information, service and advice in relation to our products and the suppression of electrical interference.

Real Progress in Bracket Design

For some years now we have been trying to evolve an aerial bracket that incorporated a ratchet movement to facilitate the tightening of strainer wires. Something that would save time in erection without increasing cost, and not just something done for cleverness sake. The thought is not new, something of the kind has been used before. We ourselves made one and had it tried out by our

own installation teams, but they found we had gone wrong in trying to pull the wire round three corners at once, so we dropped that idea and started again. The present bracket pulls up on both sides separately, thereby enabling correct tensioning on each side regardless of the dimensions of the chimney. This new bracket will make its first appearance as part of the Junior "H" cranked mast aerials sometime cluring July.

High Gain

High Front-to-Back Ratio

Which is the most important feature in a fringe aerial, high gain or high front-to-back ratio ? It all depends on local conditions. If the situation is one where the aerial is between the transmitter and a big town or a busy road with a lot of local interference, then the best aerial would be the one that gave a minimum interference from behind, i.e, one with a high front-to-back ratio such as a " Junior Multirocl." An aerial with greater gain such as a "Multirool," but with a lot of interference coming in from behind would probably be a waste of good money.

It is very easy to sit back and say "why not have both"? In practice it just isn't possible to incorporate in one aerial, all the best features. The best aerial for
a given location is a compromise, e.g., to start off with we have two frequencies to consider, sound and vision. An aerial which was peaked on sound would be a bad aerial.

A New Choke and Capacitor Suppressor
 Effective at both Television and Broadcast Frequencies.

This is a choke and capacitor suppressor somewhat similar in appearance to our L.1174, but its use is limited to 2 amps , as this is the safe carrying capacity of the small chokes incorporated.
It has been designed for connection in the lead of domestic electrical equipment such as hair dryers, vacuurn cleaners, sewing machine motors, electric fans, etc., and to be truly effective, must be fitted really close to the appliance, certainly within nine inches from the electrical connections to the brushes of the appliance. List No. L. 799.

Communal Amplification at Sea

Just as " Music while you work " is now commonplace in factories and workrooms, working conditions of ships' crews are very rightly improving, and ever increasing numbers of ships are being equipped for broalcast reception, with communal amplifiers supplying outlet points to the cabins and quarters of officers and crew.

One of the latest installations in which our equipment was used was that on m.s. " London Splendour" launched from Newcastle. The installation was carried out by Messrs. Arthur Jones \& Co. Ltd., of Micldlesbrough.

Ships installations differ from those on land, because although the installation may appear to be satisfactory when at the dock side, at sea, the signal-to-noise ratio falls, and the inherent losses in the "Eliminoise" anti-interference transformers attenuates the signal, so that the resulting energy may only be sufficient to operate one receiver, leaving insufficient energy for distribution to other points. With the introduction of the new "Belling-l.ee" distribution amplifier, sufficient energy is made available so that each receiver is able to accept as much signal as if only one was connected to the aerial.

Truleigh Hill The Brighton Booster

At the time of writing this particular item, i.e., 7 th May, and just a few days after the opening of the Brighton Booster transmitter, we had a letter from the Isle of Wight telling us of wonderful results. We have had a similar report from Portsmouth. Now the Isle of Wight is $4.5 / 50$ miles from Brighton, and the power is in the region of 400 watts. We grant you it is all across water, which is alwavs advantageous, but pleased as we are, we can only hope that the results will prove to be general or lasting. They may be due to some freak of propagation conditions which are so often followed by acute depression and disappointment. We sincerely hope to be proved wrong.

We are sending our Mobile Research Unit into the Brighton district to see what can be expected. It will work out from Newhaven, Worthing, Littlehampton, etc., and we hope to be able to publish results in the next issue.

Fire Protection by
 "Minitrip "

Every now and again we read in the newspapers that a T.V. receiver "caught fire." There are a number of ways in which this can happen, even if fuses are incorporated. Let us say right now that practically any electrical appliance, even a table lamp, can be the cause of fire without blowing the house fuses. Whereas it might he difficult to give absolute protection in the case of the table lamp, we call now get very near to it in the case of a T.V. or broadcast receiver by the fitting of " Minitrip " thermal delay switches. These small bi-metal switches each cost about as little as a fuseholder and spare fuses, and operate on excessive current or heat or both. It is well worth while fitting them when a receiver is being serviced. Their presence provides a very quick and sure indication as to which part of the circuit is at fault. Their cost is less than the labour cost in finding out by any other means.

A number of prominent set manufacturers already build one or more "Minitrips" into their receivers. We are sure the number will grow.

Written 27th. May, 1953.

MARCONI communication systems

serve mankind

Communications . . . across the wastes of desert and ocean, and through impassable swamps and jungles ... were largely unsolved until Marconi invented the miracle of radio. At one stroke he substituted ease for difficulty, and opened up a new era in the history of
man. For over 50 years the Company which Marconi founded has made communications its business. Its experience in this field is unique. If you have a communications problem of any sort, anywhere, Marconi engineers are entirely at your service.

PLANNED
INSTALLED

TRANSISTORS

6.-Stabilizing the Working Point

By THOMAS RODDAU

THE most important characteristic of modern electronic circuits is designability. It was fun, in the old days, to make a circuit work, by brute force and classical scholarship. Fun, I must add, for the designer who would set out to build a receiver, and find he had produced the first all-electric mousetrap. It was not such fun for the production and test departments, or for the unfortunate customer. Many organizations, indeed, inserted a buffer between the experimental laboratory and the production drawing office, just to be sure. This intermediate department still remains, like the human appendix, although its function has now passed away. The professional circuit designer regards the experimental work as a mere checking of his calculations and will usually demand a lab re-check if there is any disagreement.

This change in attitude is seen very clearly when we look at some of the information which is being published on transistors. It is easier to find out the way in which the current amplification varies from sample to sample than to find the distribution of mutual conductance values for a common valve, like the 6AK5. This is no doubt due partly to the hatred all valve manufacturers have for engineers: transistors at present are being produced by engineers.

Since we must accept the variability of our transistors, and since some of the variation depends on the ambient temperature, we must be prepared to design our circuits to take account of the tolerance range. We have at our disposal two obvious techniques, the use of negative feedback to stabilize the gain, and the incorporation of pre-set controls to allow for basic differences between units. Quite clearly, however, we cannot use the controls to deal with the changes which occur during the warming up period: less clearly, perhaps, there are changes in the working conditions of amplifiers which cannot be dealt with by negative feedback.

Measurements have been made which indicate very clearly what happens when a transistor is warmed up and then allowed to cool. For the $n-p-n$ transistor, which is the most interesting in this connection, the data does not seem to have been published, but some indication of the effects is given by Fig. 1, which shows the variations of $I_{c 0}$, the collector current at 40 volts on the collector and zero current into the emitter, and $V_{c 1}$, the collector voltage in the saturation condition, with 1 mA emitter current and 2 mA collector current, for a point type transistor of Type 1698 (switching type). These measurements were taken as the ambient temperature was raised to 85 deg . C and then cooled again. It will be seen that $I_{c o}$ is very sensitive to changes in temperature. The same effect, on a different scale, is obtained with the junction transistor.

Let us now look at the circuit of Fig. 2. The resistors R_{1}, R_{2}, R_{3}, are used to control the base, emitter and collector currents. The circuit is drawn for a $p-n-p$ junction transistor. It is reasonable to
assume that the collector current is independent of collector voltage: a glance at the junction transistor characteristics given in Part 4 will confirm this for a normal working point. The current amplification x is assumed to be constant over the working range : if it is not constant, we shall have distortion in the output. The emitter-base voltage is taken as zero: usually it will not exceed 0.1 volt.

If we now write down the equations for this circuit and solve them to get the electrode currents, we obtain:

$$
\mathbf{I}_{c}=\left\{\begin{array}{l}
\left.\mathbf{I}_{c 0}\left[1+\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}}+\frac{\mathbf{R}_{1}}{\mathbf{R}_{3}}\right]+\frac{\alpha \mathbf{E}}{\mathbf{R}_{3}}\right\} /\{1-\alpha+ \\
\\
\left.\qquad \begin{array}{l}
\mathbf{R}_{1} \\
\mathbf{R}_{2} \\
\mathbf{R}_{1} \\
\mathbf{R}_{3}
\end{array}\right\}
\end{array}\right.
$$

$\mathrm{I}_{e}=\left(\mathrm{I}_{c}-\mathrm{I}_{c 0}\right) \alpha$
$I_{b}=\left\{I_{c \text { n }}-I_{c}(1-\alpha)\right\} / \alpha$
We may follow R.F. Shea (Proc. I.R.E., November 1952, p. 1435) and obtain a "stability factor" S , which is the $\alpha \mathrm{I}_{c} / \alpha \mathrm{I}_{c 0}$ and is thus

$$
\mathbf{S}=\left(1+\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}}+\frac{\mathbf{R}_{1}}{\mathbf{R}_{3}}\right) /\left[\left(1+\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}}+\frac{\mathbf{R}_{1}}{\mathbf{R}_{3}}\right)-\alpha\right]
$$

In a special case, which we discussed in Part 4,

Fig. 1. Variation of two critical parameters of a Type 1698 point transistor as it is heated to 85 deg C and allowed to cool again.

Fig. 2. Basic circuit for operation of a transistor from a single battery.

the values of R_{2} and R_{3} are infinite, so that $S=$ $1 /(1-\alpha)$. With α in the neighbourhood of 0.95 , this makes $S=20$.

Shea goes on to express I_{c} in terms of $S:-$

$$
\mathrm{I}_{c}=\mathrm{SI}_{c \mathrm{0}}+\frac{\mathrm{E}}{\mathrm{R}_{3}}(\mathrm{~S}-1)
$$

and then points out that we usually want to specify the working point in terms of I_{c} and V_{c}. Given E, the available battery voltage and choosing a value for S, the following equations are obtained for the resistances.

$$
\begin{aligned}
& \mathbf{R}_{1}=\frac{\alpha\left(\mathbf{E}-\mathrm{V}_{\mathrm{c}}-\mathbf{R}_{\mathrm{r}}, \mathrm{I}_{\mathrm{c}}\right)}{\mathbf{I}_{c}-\mathbf{I}_{\mathbf{c} 0}} \\
& \mathbf{R}_{2}=(\mathbf{S}-1) /\left\{\frac{(1-\mathrm{S}+\alpha \mathrm{S})\left(\mathrm{I}_{c}-\mathbf{I}_{c \mathbf{0}}\right)}{\alpha\left(\mathrm{E}-\mathrm{V}_{c}-\mathbf{R}_{\mathrm{L}} \mathbf{I}_{c}\right.}-\frac{\mathrm{I}_{c}-\mathrm{SI}_{c 0}}{\mathrm{E}}\right\} \\
& \mathrm{R}_{3}=\mathrm{E}(\mathrm{~S}-1) /\left(\mathrm{I}_{c}-\mathrm{S}_{c}\right)
\end{aligned}
$$

It must be noticed here that R_{2} is the d.c. resistance of the load, not the impedance. For a transformercoupled output the difference is very large, of course.

The power taken from the battery is

$$
\mathbf{P}=\mathbf{E} \mathbf{I}_{c}+\frac{\left(\mathrm{V}_{c}+\mathbf{R}_{\mathbf{I}} \mathbf{I}_{c}\right)\left(\mathrm{I}_{c}-\mathbf{S} \mathbf{I}_{c 0}\right)}{\mathrm{S}-1}
$$

Quite obviously, the smaller we make S, the more power we need from the battery. A particular example taken by Shea shows that to make the working point $2 \frac{1}{2}$ times as stable, the power consumption rises from 6 mW to 14.6 mW . These equations do enable the designer to estimate what it costs him to stabilize his working point, and what will happen if he does not do so. For a $n-p-n$ transistor the value of $I_{c o}$ can be assumed to vary over a range of $10-100 \mu \mathrm{~A}$, so that an S-value of about 5 is the maximum for large signal working.

Although the initial assumptions are more in error for point transistors, the discussion above will usually provide quite good guidance in estimating the effects of temperature variations and the price to be paid
for reducing these effects. It will also be clear to the reader that the input signal can be applied to either base or emitter, appropriate decoupling capacitors being inserted to prevent alternating-current feedback.

A very interesting extension of the reasoning given above has been used by D. E. Thomas in the design of an oscillator. (Proc. I.R.E., November 1952, p. 1385). His oscillator consists essentially of the circuit shown in Fig. 1 but with R_{L} replaced by a tuned transformer, the secondary winding of which is connected in series with R_{1}. Suppose that we do not have resistances R_{2} and \mathbf{R}_{3} in the circuit. The collector current at zero emitter current is small, and the emitter bias produced by the drop in the internal base resistance is also, by the careful design of the transistor, made small. At very low currents, the current gain, α, of the transistor may not be high enough for oscillations to start. The addition of the resistances R_{2} and R_{3} will, of course, bring the transistor to a suitable working point, but if the oscillator is to be a very low power device-Thomas has been limited to 35 mW from a 6-volt battery--the designer is placed in a quandary. If he uses a very small resistance for R_{2} to avoid getting too large a loss of collector supply voltage when the circuit is oscillating, in which case R_{3} must also be small to give the necessary bias, the bleeder network consumes an excessive amount of power. If he limits the current in the bleeder network to keep up the overall efficiency he must use large resistance values, and then the stability factor we have discussed above is large.

The solution was found in the use of a non-linear resistance in the base as R_{2}. When first switched on the emitter resistance is high, but since the base current is small the value of R_{2} is also high and the collector current divides almost equally between emitter and base. As the collector current builds up, the base current increases and the resistance in the base falls from its initial value of the order of 700 ohms to something around 100 ohms. The differential resistance in the base is lower still, so that the positive fecdback shifting of working point is almost negligible. These two stability problems have been questions of operation in the linear or quasilinear range. The non-linear circuits considered in the last article can also benefit from stabilizing modifications. If you refer to Fig. 7 of Part 5, you will see that when the circuit is triggered, it runs up to a very high value of emitter current, and from the low slope of region III you can understand that the exact value of current is rather uncertain. A diode added at CDI, with a suitable bias voltage applied through R_{R}, will make the slope of region III much steeper once the collector current reaches a certain value. Three possible settings are shown in Fig. 3. The region III lines are more clearly defined, but the slope is still rather gradual. The circuit of Fig. 4 shows a biased diode also added in the base circuit. The feeding resistors R_{R} and $R_{R 2}$ are chosen to bring the diodes to a suitable

Right : Fig. 4. A further steepening is produced in region III by a second diode CD2.

Fig. 5. The base diode in this circuit makes the trigger voltage almost independent of the transistor variations.
low-impedance working current when they are " on." The diode in the collector limits the collector current sharply, but the emitter current tends to rise. As a result the voltage across the diode CD2 in the base is reversed and the emitter characteristic is made still steeper.

These two techniques for defining the peak current have their equivalents for the collector and base connections. Another problem with trigger circuits is to maintain the peak turning point at a constant voltage. The turning point at $\mathrm{I}_{e}=0$ is at a voltage

$$
\mathrm{V}_{e \mathbf{0}}^{\prime}=\frac{\mathrm{R}_{b} \mathrm{~V}_{c c}}{\mathrm{R}_{b}+\mathrm{R}_{\mathrm{L}}-\mathrm{V}_{c \mathbf{0}} / \mathrm{I}_{c 0}}
$$

where $\mathrm{V}_{c c}$ is the collector supply voltage and $\mathrm{V}_{c 0}$ is the base-collector voltage at 2 mA collector current, and the emitter open-circuited. The minimum value of $\mathrm{V}_{c 0}$ is probably 40 volts. This gives

$$
V_{e 0}^{\prime}=R_{b} V_{c c} /\left(R_{b}+R_{L}-500 V_{c 0}\right)
$$

For the values considered previously, $\mathrm{R}_{b}=6.8 \mathrm{k} \Omega$ $\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$ and $\mathrm{V}_{c c}-45$ volts,

$$
\begin{gathered}
\mathrm{V}_{e 0}^{\prime}=\frac{6800 \times 45}{9000-500 \mathrm{~V}_{c 0}} \\
\text { If } \mathrm{V}_{c 0}=36 \quad \mathrm{~V}^{\prime}=-34 \\
\mathrm{~V}_{c 0}=45 \quad \mathrm{~V}^{\prime e 0}=-32 \\
\mathrm{~V}_{c 0}^{\prime}=54 \quad \mathrm{~V}_{e 0}^{\prime \prime}=-17
\end{gathered}
$$

There is quite a large movement here. Can anything be done to stabilize this point? The answer is again to use a diode, connected in the base circuit as shown in Fig. 5. This circuir is due to A. J. Rack, of Bell Telephone Laboratories, and operates in the following way. With zero emitter current the diode is normally conducting. Consequently the resistance in the base circuit is low and is actually about 200-300 ohms. This reduces $\mathrm{V}_{e 0}^{\prime}$ to a value of

$$
\begin{gathered}
\mathrm{V}^{\prime}=(200 \times 45) /\left(2400-500 \mathrm{~V}_{c 0}\right) \\
\text { If } V_{c 0}=36 \quad V^{\prime}=-0.58 \\
\mathrm{~V}_{c 0}=54 \quad V_{e 0}^{\prime}=-0.37
\end{gathered}
$$

The change in transistor characteristic which moved the peak point 17 volts without the diode moves it only 0.2 V with the diode.

In operation the circuit will trigger as soon as the algebraic sum of emitter and collector currents, which flows into the base, exceeds the bias current through the diode. The diode then becomes a high resistance. The total voltage between collector and base then becomes $V_{c c}+V_{2}$ and the emitter is biased to $V_{1}+$ V_{2}. The load line shifts parallel to itself. This arrangement also reduces the dissipation in the " off" condition.

These examples of the design problems involved in the use of transistors have been selected to indicate the methods of analysis and the methods of solution
which have proved valuable. Each application will require individual examination, to determine which solution is the best. For example, the stabilization of the linear amplifier working point is of vital importance in the design of a stage giving maximum output. There is no choice here at all. A low-level stage, however, may be designed to operate at an appropriately low current and collector voltage. Low collector voltage and low emitter current appear to be desirable if the best noise figure is to be obtained. The price paid is in the stabilization, since the lowlevel working point must be maintained accurately. The alternative is to work out a higher-level working point, and allow it to drift if changes in transistor characteristics take place. It will usually be desirable to make several test calculations to find where the best working point will be.

The various stabilizing techniques described for the trigger circuits will influence the time constants of the monostable and astable actions. In particular, the steeper slope of region III will tend to lengthen the output pulses and make the astable circuit more nearly a square-wave generator.

Just as we omit the cathode resistor, its decoupling, the anode decoupling circuits and quite a lot of other oddments when carrying out general valve circuit investigations, so these stabilization processes will often be omitted in general transistor circuit studies. In any future circuit discussions these basic elements will be assumed.

Acknowledgment. Fig 1 is based on Fig. 6 of "Variations of Transistor Parameters with Temperature " by A. Coblenz and H. L. Owens, Proc.I.R.E. Nov. 1952, p. 1473, and Fig. 2 is based on Fig. 1 of "Transistor Operation: Stabilization of Operating Points," by R. F. Shea, Proc.I.R.E. Nov. 1952, p. 1435.

METER SIUNTS

Their Accurate Adjustment

THE VALUE OF SHUNT required to extend the range of a milliammeter is easily calculated if the resistance of the meter is known. Unfortunately, it is not always known with sufficient accuracy; any uncertainty about the meter resistance produces a roughly equal uncertainty about the current range of the shunted meter.

It is often difficult to measure the resistance of a meter with sufficient accuracy. An a.c. method may be inaccurate because of the inductance of the coil, while a d.c. method may not be sufficiently sensitive if the current in the meter is kept to a safe value.

When resistances other than that of the meter can be measured accurately, or rather compared accurately (for their actual values need not be known) it is possible to adjust the resistance of a shunt very accurately indeed by using the circuit shown in the figure on the following page. This is a form of bridge with the meter in one of the arms and a resistance \mathbf{R}_{3} to limit the current to a safe value. A switch S is connected in place of the usual galvanometer

Circuit used for adjusting a meter shunt.
and the shunt R_{3} is adjusted so that the meter deflection is unchanged by opening or closing the switch.

Let the meter resistance be \mathbf{R}_{m} and the current needed in it for full-scale deflection be I_{m}. It is required to shunt the meter by \mathbf{R}_{s} so that when so shunted the meter reads full scale for a total current I. The current in R_{s} is then $\mathrm{I}-\mathrm{I}_{m}$, and the proper value of shunt is given by the well-known expression

$$
\frac{\mathbf{R}_{m}}{\mathrm{R}_{s}}=\frac{\mathrm{I}}{\mathrm{I}_{m}}-\mathbf{1}
$$

In Fig. 1, the two resistances R_{1} and R_{2} are chosen so that

$$
\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}}=\frac{\mathbf{I}}{\mathbf{I}_{m}}-1
$$

There is no other restriction on their value, which need not even be known, but it is of some advantage if they are considerably larger than $\mathrm{R}_{m_{c}}$ and $\mathrm{R}_{\hookleftarrow}$, for the sensitivity of the meter indication is thereby increased.

When the shunt has been adjusted to the proper value

$$
\frac{\mathbf{R}_{m b}}{\mathbf{R}_{s}}=\frac{\mathbf{R}_{1}}{\mathbf{R}_{2}}=\frac{\mathbf{R}_{m b}+\mathbf{R}_{1}}{\mathbf{R}_{s}+\mathbf{R}_{\underline{2}}}
$$

The currents I_{m} and I have been set up in the proper ratio. When S is open, only I_{m} flows through the meter. When S is closed, I flows through the shunted meter. If the deflection is the same this is the required condition.

As an example of the procedure, suppose it is desired to shunt a $1-\mathrm{mA}, 100-\Omega$ meter for 10 mA full-scale deflection, the figure of 100Ω for the meter resistance being a nominal one only. Then

$$
\frac{\mathbf{R}_{1}}{\mathbf{R}_{\mathbf{2}}}=\frac{\mathbf{R}_{m}}{\mathbf{R}_{s}}=10-1=9
$$

The required shunt \mathbf{R}_{s} will be about 11Ω and a length of resistance wire giving about 15Ω should be chosen to start with.

The resistors R_{1} and R_{2} must be chosen to be in the ratio $9: 1$ as accurately as possible. It is convenient to make $\mathrm{R}_{2}=100 \Omega$ and $\mathrm{R}_{1}=900 \Omega$ but the exact values are unimportant as long as the ratio is right. It is convenient to operate with the meter at about one-half scale, for which it takes 0.5 mA . The voltage drop across R_{1} and R_{m} is $0.5(0.9+0.1)=0.5 \mathrm{~V}$ so R_{3} must drop about 1 V if a single dry cell is used for E. The current in R_{3} will be 5 mA , so it must be 200Ω and so this component must be a variable resistor of, say, $400-500 \Omega$ maximum value.

When S is closed, the meter reading will drop if \mathbf{R}_{s} is too low but increase if \mathbf{R}_{s} is too high. It is desirable to start with too low a value of \mathbf{R}_{s}, therefore, and to increase it until closing S docs not alter the meter reading. The method is quite sensitive,
for it is usually possible to detect a flicker of the meter needle which amounts to a deflection of only 0.1% of full-scale and so it is possible to adjust the shunt to the same order of accuracy.

While adjusting the shunt, care should be taken to prevent it from becoming open-circuited. If it does open, the meter current may exceed the full-scale value. It will be greatly excessive if S is closed and for safety, S should be a push-button type and only operated when R_{s} is in place. It may also be excessive with S open if R_{3} is large and, for safety's sake, it is a good plan to make R_{1} and R_{2} high enough for R_{3} to be dispensed with. This does not permit such great freedom in the choice of values for R_{1} and R_{2}, for R_{1} must be about $2 \mathrm{E} / \mathrm{I}_{m}$ or some $3 \mathrm{k} \Omega$ for the example considered. One could use, for instance, $R_{2}=300 \Omega$ and $R_{1}=2,700 \Omega$. The meter current with S open would be $1.5 / 2.8=0.536 \mathrm{~mA}$, which is quite suitable.
Having in this way found the right value of shunt for a given current ratio, one can measure the shunt on any bridge and so obtain indirectly the value of the meter resistance.

Extension Hearing Aid

DESIGNED to enable a deaf person to hear broadcast (including television) sound in comfort without raising the normal loudspeaker volume, the "Adaphone" Type M3 unit recently developed by the Multitone Electric Company, 223-227, St. John Street, Clerkenwell, London, E.C.1, is provided with an independent volume control and a "hot-wire" volume compression circuit. The latter is considered to be essential now that miniature insert earpieces are available which reach the threshold of pain (130 db) for inputs of only 5 mW , and also because a large proportion of potential listeners with "recruitment" deafness, benefit from this type of response.

Complete isolation of the mains is ensured by a doublewound transformer, and in cases where the output transformer secondary on the set is not earthed, a $1: 1$ transformer can be supplied for installation inside the set to make the extension leads themselves safe.

The price of the Type M3 unit is $£ 515 \mathrm{~s}$ complete with earpiece and earmould. An alternative model without a.v.c. is available at $£ 419 \mathrm{~s}$. The $1: 1$ transformer, when nccessary, costs 10s 6d.

It has bcen suggested that as the response curve of the carpiece is smooth, and the quality of reproduction is "acceptable also to persons with normal hearing, the "Adaphone" when used in conjunction with the normal free sound field at some distance from the loudspeaker, gives an interesting quasistereophonic effect.

[^10]
which details the wide range of Engineering and Commercial Courses of modern training offered by E.M.I. Institutes - the only Postal College which is part of a world-wide Industrial Organisation.

Over 150 Courses including:

Radio \& Television
Gen. Radio \& T / V Eng. Radio \& T / V Servicing Radar
Sound Recording Industrial Electronics Advanced Radio 'P.M.G. Certificates Radio Amateurs Licence

Draughtsmanship
Eng. Drawing \& Design Tracing
Jig \& Tool Design

Mechanical Engineerlng
Gen. Mech. Eng. Diese: Engines Refrigeration Metallurgy Workshop Practice Maintenance Eng. Machine Tools \& Metrology Marine Eng.
Electrical Engineering
Gen. Elect. Eng. Installations \& Wiring I.E.E. Theory

Also Examination Courses for:-General Certificate of Education, B.SC. (Eng.), Common Preliminary, A.M.I.Mech.E., A.M.I.C.E., A.M.I. Struct.E., A.M.Brit.I.R.E., A.F.R.Ae.S., A.M.I.P.E., A.M.I.I.A., A.M.I.M.I., A.M.I.H. \& V.E., M.R.San.I. A.M.I.San.E., A.M.I.Munc.E., A.M.I.E.D., A.M.S.E., L.I.O.B. AIso CITY and GUILDS Certificates in Mechanical, Electrical, Aeronautical, Automobile, Telecommunications and Structural Engineering; Refrigeration, Heating \& Ventilation. Courses also provided for all branches of Commerce and Business Management.

Production Engineering \& Management Gen. Prod. Eng. Industrial Admin. Works Management Production Planning Personnel Management Time \& Motion Study Costing
0 ffice Practice
Aeronautical Engineering
Gen. Aero. Eng.
A.R.B. Licences
A.R.M. Certificates

Civil Engineering and Building	\& Management
Civil Engineering	Gen. Prod. Eng.
Building Construction	Industrial Admin,
Heating \& Ventilating	Works Management
Sanitary Engineering	Production Planning
Surveying	Personnel Management
Clerk of Works	Time \& Motion Study
Carpentry \& Joinery	Costing
Builders Clerks	Office Practice
Automobile Engineering	Aeronautical Engineering
Gen. Motor Eng,	Gen. Aero. Eng.
High Speed Oil Engines	A.R.B. Licences
Garage Management	A.P.M. Certificates

-POST NOW

Please send, without obligation, the above FREE book.
E.M.I. Institutes, Dept. 127 43 Grove Park Road, Chiswick, London, W.4.

```
Subject(s) which interest me
```

Name
Address

We are proud to introduce the CLAROSTAT Type 58 Wire-wound Potentiometer, designed by the world's foremost Potentiometer manufacturers and produced for the first time in this country. The type 58 has many features which will immediately appeal to the discriminating user.

FEATURES

* Rated at 3 watts and available in all values up to 100,000 ohms linear.
* Special windings are available to requirements.
* High Grade Bakelite Casing, of rugged construction. Solder Tags heavily silver-plated and of special design making them completely immovable under all conditions.
* Metal cover firmly keyed into Bakelite Casing, cannot loosen or turn. Connected to fixing bush providing automatic "grounding" of cover.
* Obtainable with single or double pole mains switch.
\% Dimensions: Diameter, $1 \frac{2}{3} \frac{1}{2} \mathrm{in}$. Depth of case without switch語in。
* Samples and full specifications available on application,

WHOLESALERS

CLAROSTAT TYPE
58 Wire-Wound
Potentiometers are supplied individually packed in attractive printed cartons. Delivery is prompt. Write for price list and details of very attractive trade terms.
\dagger Regd. Trade Mark

LETTERS TO THE EDITOR

The Editor does not necessarily endorse the opinions expressed by his coriespondents

Two-band Television Reception

THE letter from W. T. Cocking in your June issue was most timely. It has been the secret hope of those who are closely concerned with the coming problems of alternative television programmes that someone would give voice to the misgivings felt by many of us in the light of often uninformed comments in the lay press about converters for existing television sets.
The problems of double conversion in a superhet television receiver, due to the various combinations of oscillator frequencies and harmonics with consequent whistles, may in fact prove so difficult that it might, in the event, prove cheaper to make the converter slightly more complex than that required for double conversion. An added reason might well be that by so doing, one type of converter could find a more widespread application. It is therefore suggested that, rather than add to the converter the requirement for conversion in both bands 1 and 3 or band 1 channel switching in the set, direct conversion from band 3 to the sound and vision i.f.s might be feasible. In this way it would only be necessary to stop the receiver oscillator when using the converter, thus considerably reducing the problem of oscillator harmonics and radiration. This method might involve less modification to the receiver itself.

Clearly, converters can and will be mass-produced but the designers must be in possession of all the facts and requirements before they can hope fully to assess the problem and complete their designs.
Needless to say, as soon as such information becomes available there will be heavy public demand in anticipation of the new service but it behoves designers and makers alike not to be stampeded into premature release of converters if they are not to pass on to the retail trade and public many of the problems which should rightly be solved by themselves.
What surely is needed at this time is an authoritative statement in the popular press setting out in language understandable to the layman just what is involved by giving an indication of the cost of a converter and stressing that an external aerial will be required and so forth.
Failing this, the present confused situation may well become chaotic, doing disservice to public and industry alike.
Richmond, Surrey.
R. W. ADDIE.

A Matter of History

THOMAS RODDAM'S comparisons between the development of the valve and the transistor were well suited to the April issue. To the radio historian, there is a remarkable similarity between their paths so far.

Most of the early audion valves went for use in longdistance telephone circuits, leaving few for other applications. These valves, with a G_{m} of less than unity, gave a gain of $6-12 \mathrm{db}$. using 50 V h.t. and the output power was of the order of milliwatts. De Forest boasted a gain of 120 times with three transformer coupled stages. Every effort was to obtain increased gain. More than one grid was tried and every sort of connection. While the use was confined to known (voice) frequencies, a functional analysis similar to that now given for transistors was adequate. I can well imagine de Forest remarking about his ultra-audion circuit, that "the base-emitter capacitance plays an important part in the functioning of the circuit."

The use of the valve at r.f. (1913), produced instability and damping resistors and "reversed" feedback were used for control. Expansion of the theory came with increased
development during the war (Hartley, Valauri, etc.). Only after the war were valves available for general use. Incidentally the early method of connecting a transformer was in the h.t. negative end of the anode circuit. This was not negative feedback but a cathode follower circuit was given in 1924 (see Wireless World, Vol. XIV, p. 336). The "diminisher" circuit was also used at about this time in a Marconi receiver having five tuned stages.
Huddersfield, Yorks.
W. M. DALTON.

Broadcast Transmitter Distortion

ALTHOUGH I readily agree with and support the arguments for the introduction of v.h.f. broadcasts, I do not accept the contention that this is the only solution to the problem of distorted transmissions. I am convinced from many years of listening that the hideous non-linearity distortion on peaks that is often, but by no means always, radiated is not simply the result of inevitable volume compression. If so, why is it that superb quality is sometimes radiated from the Midland transmitter at Droitwich during programmes that clearly require much compression, e.g., the broadcast of "Die Fledermaus" in March?

Secondly, although in the past the quality of recorded transmissions has called for severe criticism, this does certainly not apply invariably to-day. The quality of the Jack Jackson records on Saturday nights is often splendid, and better than many direct broadcasts.

Although it is impossible for a mere listener to ascertain at which link in the chain of transmission distortion creeps in, I am convinced that the worst emanates from the audio network before the signal arrives at the final modulator. If this were not the case quality would not vary but would always be bad.
My view is that the B.B.C. could do far more than it does to improve the standard of medium- and long-wave transmissions, without adopting the defeatist policy of assuming that nothing but v.h.f. will improve the situation. In fact, until the audio chain is beyond reproach v.h.f. will only emphasize non-lincarity distortion by extending the high-frequency response. Television sound is not always perfect!

With the advent of the high-fidelity reception now attainable, more stringent and consistent control of broadcast quality is required. With some diffidence, and assuming that no such post exists, may I suggest the appointment of an enthusiastic engineer devoted to and responsible for quality control alone. Future improvements in quality are in the hands of the B.B.C. and such an appointment might go some way towards effecting an improvement.
Wednesbury, Staffs.
A. A. COTTERELL.

THE correspondence regarding B.B.C. transmitter distortion is interesting and, let us hope, profitable. One thing seems to have been overlooked, however, namely, distortion in the detector circuit.
As is well known, conventional diode and "infinite impedance" circuits will neatly clip the peaks of any modulation exceeding a certain percentage. Such clipping gives rise to a very objectionable form of distortion, particularly on wide-range reproducing equipment. Clipping can take place at modulation levels as low as 80 per cent with quite usual circuit values.

The writer has used for some time a circuit similar to the "No-compromise R.F. Tuner" described in the Oct., 1952, issuc of Wireless World. It is because B.B.C. transmissions do not show the distortion complained of by your correspondents, on his own equipment, the acoustic
output of which extends well beyond $15 \mathrm{kc} / \mathrm{s}$, that he ventures to draw attention to the possibility of detector distortion being the cause of complaint.
London, S.W.12.
T. S. MARSHALL.

Lamp Interference

IT is likely that K. Robinson (your May issue) can cure or alleviate his interference by placing a magnet near the lamp. This indicates the electron origin of the oscillation.

It is in fact fairly easy to get a standard $230-\mathrm{V}$ lamp to oscillate above $40 \mathrm{Mc} / \mathrm{s}$ by connecting a suitable choke in each lead. The ends of the filament are then comparable to the grid and anode of a Barkhausen Kurz oscillator. Used on d.c. the interference pattern is a series of stationary bars, but a.c. gives a single bar and a diathermy herringbone. The likely cause is f.m.
A 60 -watt $230-\mathrm{V}$ lamp can be used as a transmitter; modulation can be applied by holding a magnetic earpiece near enough or, in the cheaper type of bulb, by shouting at it. The result is received on an f.m. receiver between 40 and $100 \mathrm{Mc} / \mathrm{s}$.
An article by P. S. Rand in " $C Q$ " for July, 1952, gives more information on this subject.
It is unwise to place a lamp on a TV set-interference is then quite likely.
Fraserburgh.
A. Q. MORTON.

YOUR correspondents on this subject will be interested in the April issue of Popular Science, which, on page 133, gives an illustration of this type of interference under the heading "Old Style Lamp: Obsolete Tungsten Filament Can Do This."

In the same article it was stated " Worcester, Mass., had an epidemic of TV interference until the power company offered to replace old-style tungsten-filament lamps with the modern variety free of charge. Some 150 of the old lamps were turned in and complaints dropped to nil."

Ratmalana, Ceylon.
F. E. SIGGERS.

Amateur Aillocations

UNDER the heading "Amateur $2-\mathrm{Mc} / \mathrm{s}$ Band" in your June issue it is stated that amateurs have been granted the use of the band $1800 \mathrm{kc} / \mathrm{s}-2000 \mathrm{kc} / \mathrm{s}$ instead of the band $1715 \mathrm{kc} / \mathrm{s}-1800 \mathrm{kc} / \mathrm{s}$ withdrawn from May 1.

Obviously the implication is that the authorities, in generous mood, have given more than twice as much as they have taken away. The unfortunate wording of this report, which is undoubtedly published in all good faith, could not present the position of the amateur on this band more inaccurately, nor could it be more prejudicial to the interests of the fraternity at the present time.

In fact, amateurs have had the use of the band 1715$2000 \mathrm{kc} / \mathrm{s}$ on a non-interference basis for a number of years, and it has now been reduced in width, therefore, quite appreciably. Some, at least, of the maritime stations listed in your May issue, have been operating within the same band hitherto, and as far as is known, cases of interference, if any, being caused by amateurs have bcen so rare that their continued use of the band on these grounds has never been in doubt.

The real significance of changes in the maritime list is not apparent at first sight, but on analysis it will be found that amateurs now have the use of about half-a-dozen spot frequencies (subject to total sidebands of $1 \mathrm{kc} / \mathrm{s}$), and some $27 \mathrm{kc} / \mathrm{s}$ distributed (after allowing for $3 \mathrm{kc} / \mathrm{s}$ sidebands). The frequencies at present covered by the Loran transmissions have not been included, but if this service is reallocated a further $16 \mathrm{kc} / \mathrm{s}$ could become available. Fcw
will care to disagree that the foregoing presents an entirely different picture from that conveyed in the bald statement that we have now a new band of $200 \mathrm{kc} / \mathrm{s}$ in width. Furthermore, it has been hinted that we shall lose the band altogether eventually, and there can be little doubt that this will be the first of the m.f. bands to be axed completely so far as amateur activity is concerned.

The m.f. bands are the ones of primary interest to the fraternity, and to summarize briefly the overall position it may be stated that $3.5 \mathrm{Mc} / \mathrm{s}-3.8 \mathrm{Mc} / \mathrm{s}$, which has always been shared with other services, now carries so much traffic that it is useless to the majority of us. In the notorious $7-\mathrm{Mc} / \mathrm{s}$ region, $200 \mathrm{kc} / \mathrm{s}$ has already been taken for broadcasting, and the remaining $100 \mathrm{kc} / \mathrm{s}$, nominally exclusive to amateurs, is being encroached upon by all and sundry as circumstances, apparently, justify. The major longrange band at $14 \mathrm{Mc} / \mathrm{s}$ now supports at least one highpower commercial transmission, and may very well come in for closer attention by such interests in the near future.

On the other hand a generous allocation was made recently at $21 \mathrm{Mc} / \mathrm{s}$, generous no doubt because nobody else wanted it, and because it is as useless for most purposes as the $28-\mathrm{Mc} / \mathrm{s}$ band which has long since been abandoned. The conclusion is, that whereas on paper we have a few megacycles, in practice it is difficult to find a few hundred kilocycles which we can use.

In encroaching upon your space, it is in the hope that your journal may recollect the role of the amateur in the field of radio communication, and enter this as a plea for a new deal for those, and their heirs, who if by no other right, have staked their claim to recognition in the form of permanent and unmolested frequency allocations.

Buckhurst Hill, Essex.
H. E. JAMES, G5JM.

Are Symbols Overdone?

THE correct use of standard letter symbols and abbreviations is a great convenience where space-saving is worth while, such as in writing and in printed tables, abstracts, diagrams, etc. It is, of course, essential to use only standard symbols as given in B.S.I. publications: incorrect or obsolete symbols are never justified. Some symbols are unfortunately still in use which are long obsolete; for example, " has been replaced by Ω for ohms for about 30 years. But the use of symbols by non-technical people such as shorthand-typists, clerks, etc., can lead to confusion which may be avoided by reading and speaking symbols as words and not as letters. Why should a typist be expected to learn all electrical terms and symbols? She won't, anyway, unless very exceptional. The copy typist has no difficulty: on typing from a written MS she types as she reads, and in such cases as " $\mu \mathrm{F}$ " she can type "uF" and add the tail of the " μ " by hand. Should she type "microfarad" as MFD, MF, mf, mFd, or introduce any other incorrect symbol then she initiates possible confusion which should be strongly discouraged. Storemen and others, although not technically trained, have to handle electrical equipment; some components being so small that there is no room for the term in full, but only the symbol or colour-coding. They therefore need to know correct symbols, and colour-coding. A verbal request to the storeman for a " 50 M.A. choke" may be taken as microamps or milliamps, since he will know that "MA" is often wrongly used in print for microamps or milliamps, whereas it should mean megamp. But if he is correctly told in words, such as " 50 milliamps," then no error can arise. Many shop windows and advertisements will be seen with components and instruments marked $100 \mathrm{M} / \mathrm{V}$, $50 \mathrm{MA}, 200 \mathrm{mmf}$, etc.; often inconclusive without inspection of the component itself. Should we not therefore do better to retain the use of symbols to ourselves, and quote the terms in full to non-technical users who should not be expected to know the symbols without the possibility of error?
E. H. W. B.

H. P. C.'s Big Day

[Screen photograph by fohn Cura)

INDOUBTEDLY the Coronation day broadcasts were a real triumph for the B.B.C. Everyone who looked-in or listened-in on June 2 was full of praise for the excellent way in which this great operation was handled. In particular it was a triumph for the special technique of outside broadcasting-the best demonstration we have ever had of radio's power to convey all the excitement and actuality of a great event at the very moment of its happening. Naturally, the immediate reaction of most people was to the artistic presentation of the programmes, but those in any way connected with radio would be thinking at the same time of the great complexity of the technical arrangements which made it all possible.

Although television was undoubtedly the star performer on this occasion, sound broadcasting had really the bigger job to do. The programme we heard at home was only one of many that were put out to all parts of the world. Altogether facilities had to be provided for some ninety commentators along the route of the procession and in Westminster Abbeyand this does not include all the additional microphones used for sound effects, of which some forty were installed in the Abbey alone. Not only were there all the B.B.C.'s home and overseas transmitters to be served, but a number of foreign broadcasting organizations as well, and at the same time arrangements had to be made for supplying several newsreel film companies, the television sound control room, the sound reinforcement system in the Abbey and public address loudspeakers along the route of the procession. It was, of course, the Post Office who provided and maintained all the lines necessary for this complicated link-up, and a share of the credit must go to them for the vital part they played in the whole operation.

Without going into details, the general plan of the sound broadcasting arrangements was this. Microphones were grouped at a number of important points along the processional route (one group being in the Abbey itself), and at each of these sites a temporary control room was set up to house the associated control gear and programme engineers. From these temporary control rooms the microphone outputs intended for transmission abroad were routed to a main control room on the new Colonial Office site, while those for the B.B.C. home transmitters were connected to another main control room in Westminster Abbey. The assembled programmes coming out of these two main centres were then sent to Broadcasting House for distribution to their various destinations, most of them
going by way of B.B.C. and Post Office transmitters and others by line to the Continent. It goes without saying that there was a good deal of duplication of equipment and circuits to guard against possible breakdowns, although in fact none of it actually proved to be necessary.

The commentators were using lip ribbon microphones, so they could work quite close to each other without their speech interfering (about 4 ft Gin apart) and there was no necessity for sound-proof commentary boxes. They wore headphones which could be switched either to the home programme or to the programmes they themselves were handling. Each commentator was associated with a particular control engineer in the control room, and the engineer could speak to him by telephone or give cues by means of red and green signal lights.

The B.B.C. recording department was also very much involved in the day's proceedings. They made recordings of the entire home programme, of the ceremony from the Abbey, and of nearly forty overseas commentators, and at the same time handled items coming in from all over the world for the evening programme preceding the Queen's speech. Altogether, they used some 3,600 disks and about 85 miles of magnetic tape on 92 reels.

And now for the television arrangements, which will be described by the Superintendent Engineer of the B.B.C.'s television outside broadcasts department.

Television Arrangements

By T. H. BRIDGEWATER

APART from the sheer size of the operation-the deployment of twenty-one cameras, five mobile control rooms, three subsidiary control points, and so onthe television broadcast of the Coronation ceremonies presented a number of problems not usually met on the simpler type of O.B. It was also made the occasion to introduce several new technical refinements.

In the ordinary course of events, O. Bs originating in the London area are routed into the distribution network via the central control room at Alexandra Palace. On this occasion, with five main sources to be handled simultaneously, it was necessary to instal

(1) Camera with zoom lens installed over the West Door in Westminster Abbey. Because of the low roof the viewfinder had to be taken off the camera and placed on the floor.
(2) Temporary television control room installed at Broadcasting House, where the pictures from five mobile control rooms were previe'ved and selected.
(3) Temporary control room for sound broadcasting in Trafalgar Square. Each control position manned by an operator was associated with one commentator, and had a mixer for introducing sound effects.
only about three feet, so that, as will be seen from the picture, the cameraman had not even the space to sit upright, let alone stand.

The event saw the introduction of many more zoom Ienses and a total of five were in service. Two of these were of the new Watson type with interchangeable back elements, giving a choice of two 5:1 magnification ranges-with angles of view of 3 deg to 15 deg and 6 deg to 30 deg -while another, also a new design, came from Taylor, Taylor and Hobson with a range between 5 deg and 25 deg . The B.B.C. has encouraged the development of zoom lenses over a number of years and camera technique is now reaping the benefit of research and design in this important field. Viewers of the Coronation O.B. may have noticed the smooth manner in which interesting features in the subject were brought closer, or when the television camera appeared to "catch up" again on some part of the procession that had already receded into the distance.

Telephoto Lens

Another special lens, relatively new to television, was the Dallmeyer 40in "double-folded" telephoto. This was in use at the Victoria Memorial position on a camera facing Buckingham Palace, and since its horizontal angle (in conjunction with an image orthicon pick-up tube) is as little as $1^{\frac{3}{3}}$ deg a very close view of members of the Royal Family during their appearances on the balcony could be obtained. An angle of this order calls for extreme care in use as any slight shake or vibration-even the effect of a puff of wind-will result in a greatly exaggerated movement of the image on the screen.

Every effort was made to transmit the clearest possible pictures and a noticeable enhancement of definition came from the use of the new "derivative equalizers," developed by the B.B.C.'s Research Department* and produced in sufficient quantity to equip nearly all the cameras in use on June 2. These equalizers work on the principle of adding to the picture signal derivatives of itself obtained by differentiating circuits, and provide a simple means of adjusting and compensating optical and electrical losses.

It was thought desirable to avoid the momentary frame-slips which usually occur when switching between vision sources or cameras whose wave-forms are not triggered from the same pulse generators; the number of such interruptions in the course of a long broadcast would have been sufficient to be considerably distracting. Accordingly the B.B.C.'s Designs Department evolved a system of remotely locking each of the eight pulse generators in use by means of a master frequency sent by lines from the Broadcasting House central control point. A phasing control in series with the signal fed to each line permitted precise frame phasing to an accuracy of a very small fraction of one line; hence it was quite feasible to "cut" from one picture source to another without any loss of synchronism.
The relaying of the Coronation broadcast to France, Holland and Western Germany was looked upon by the B.B.C. as a project of the greatest importance and the most careful preparations and tests were made during the preceding six months. It was arranged that the pictures would be the same as those provided

[^11]for our home audience, but commentaries in the different languages would be superimposed on the effects and ceremony. French commentators were installed alongside the British at several of the main camera positions and spoke through independent microphones and circuits to a separate control point in a studio at Broadcasting House, thence to Paris.

The vision signals reached their various Continental destinations almost entirely by centimetre-wave links, five of which were installed and operated between London and Cassel (France) by Standard Telephones and Cables, on behalf of the B.B.C. and Radio-diffusion-Télévision Française. A particularly im-portant-indeed essential-feature was the use of diversity reception on the cross-Channel link, in order to overcome the fading which is such a well-known and troublesome phenomenon on over-sea paths with frequencies of $4,000 \mathrm{Mc} / \mathrm{s}$ or higher. From previous experiments, S.T.C. had established the value of using two receivers with their parabolic aerial dishes mounted some fifteen feet apart in the vertical plane. It has been found that when the signal at one receiver is subject to fading, that of the other is steady; thus, with both signals available, a fading-free signal can always be obtained. This method amply justified itself both during the tests preceding the Coronation transmission and on Coronation day itself. There is no doubt that this method will find applications in the future, not only for any further links with the Continent but also for certain O.Bs within the British Isles.

COBONATION NAVAL REVIEW

Another notable outside broadcasting event was the televising of the Coronation naval review at Spithead by cameras on board H.M.S. Eagle and H.M.S. Reclaim. The vision signal was relayed by radio to a shore receiving station near Portsmouth and then on to London. The cameras on board the ships were synchronized with the apparatus on shore by means of a mains locking signal sent out to them on a Navy radio channel ($140 \mathrm{Mc} / \mathrm{s}$). This picture shows how the assembled ships appeared on the radar screen of the Marconi Marine research and demonstration yacht Elettra II.

Brighton "Booster" Troubles * Radio
 Technicians' Association * Electronics Show

Television Interference

BRIGHTON VIEWERS whose receivers are tuned to Alexandra Palace are experiencing severe interference from sets receiving the local "booster" station on Trulcigh Hill working on $56.75 \mathrm{Mc} / \mathrm{s}$ vision and $53.25 \mathrm{Mc} / \mathrm{s}$ sound.

The interference either completely wipes out the picture or produces the familiar "herring-bone" pattern, and in some cases gives rise to a heterodyne on the accompanying sound transmission.
It is caused by superhet receivers having a vision i.f. lying between 9 and $15 \mathrm{Mc} / \mathrm{s}$ and a sound i.f. between 5.5 and $11.5 \mathrm{Mc} / \mathrm{s}$, with the local oscillator on the lower frequency beat. When receiving the Brighton booster the local oscillator in these receivers must be tuned between 41.75 and $47.75 \mathrm{Mc} / \mathrm{s}$, which is within the pass band of any television set tuned to Alexandra Palace on 41.5 and $45 \mathrm{Mc} / \mathrm{s}$.

Owing to the good signal from the booster many viewers who have had their sets converted have not bothered to replace the aerial. This means that with the aerial flatly tuned over 41 to $48 \mathrm{Mc} / \mathrm{s}$ it is bound to radiate any locally generated ōscillations. Reports given at a specially convened meeting of the Brighton and District Radio Club show that a receiver radiating in this way on about $45 \mathrm{Mc} / \mathrm{s}$ can cause serious interference to A.P.-tuned sets within a radius of about $\frac{1}{4}$ mile.

Another aspect of the trouble is that amateurs within the service area of Truleigh Hill are suffering quite bad interference when working on the 2 -metre waveband.

Catering for Technicians

BECAUSE technicians outnumber "professionally qualified electrical engineers" by at least five to one the I.E.E. has been considering for some time the possibility of forming an organization to cater for the needs of this important and growing section of the industry. It has, however, been recognized that to set up a single association purporting to cater for the needs of all electrical technicians would be ineffectual. The sub-division represented by the four specialized sections of the I.E.E.-radio, supply, utilization and measurement-has, therefore, been adopted in the Institution's approach to the problem.

The work of the Study Committee on Associations for Technicians set up by the I.E.E. in 1950 has advanced furthest in the "utilization" field, where the existing Association of Supervising Electrical Engineers is considered to meet the need. In other fields work is continuing, and in the May issue of the fournal of the I.E.E. it is reported that the policy is to act where possible in collaboration with an existing body "having a substantial technician membership" and only where this is impracticable to consider stimulating the setting-up of an entirely new body. It remains to be seen what will happen so far as the radio technician is concerned.

Radio Production

THE CENSUS OF PRODUCTION for 1950*, covering inter alia radio and telecommunications, details separately the information regarding private firms and Government establishments. The number of radio firms in the U.K. employing more than ten persons is given in the report as 424 , compared with 156 in 1935. Their gross output was $£ 136,523,000$ in 1950 , compared with

[^12]TELEVISION RELAY-One of the eleven Telefunken relay stations used by Nordwestdeutscher Rundfunk to link its chain of five television transmitters.
£27,910,000 in 1935. The number of operatives ("manual wage earners") employed was 106,999, while the number of administrative, technical and clerical employees was 35,944.

There are 28 Government establishments listed as employing 59,166 operatives with an administrative-technical staff of 13,282 .

Wired Broadcasting

THE USE of the telephone network to convey r.f. to listeners is not new. Experiments were carried out in this country and others before the last war, but it is interesting to read, in the March issue of the Bulletin of the European Broadcasting Union, of its development in Sweden. Ten years ago the Swedish broadcasting authority (Radiotjänst) recommended that the distribution of its programmes over wires should be a normal auxiliary to their radiation.

The system has provision for distributing three separate programmes on different channels in the long-wave broadcasting band, although at present only one is being transmitted on $164 \mathrm{kc} / \mathrm{s}$. A signal of only a few microvolts is required at the subscriber's connection, and it is claimed that there is little risk of interference of any sort. The low power of the transmitters (6 mW), the low impedance of the telephone circuits, and the fact that they are balanced to earth make it impossible to detect any radiated signal at distances of much more than 20 metres. Filters are provided to prevent mutual interference between radio and telephone.
The r.f. signals are fed into the networks serving homes within a radius of not more than 150 kilometres from the transmitter. Amplifiers are installed at intervals varying from 10 to 30 kilometres according to the attenuation of the circuits and subscribers' distribution amplificrs are provided at all telephone exchanges in the network.

At present there are 15 networks in use serving some 50,000 subscribers, who pay an installation fee of 5 crowns and the annual wireless licence fee of 15 crowns (approximately £1).

Electronics Exhibition

RESEARCH DISPLAYS and demonstrations by universities, hospitals and the industry as well as exhibits by more than 50 manufacturers are included in the plans for the eighth annual Electronics Exhibition, organized by the N.W. Branch of the Institution of Electronics, which opens in Manchester for six days on July 15th.

During the exhibition, which will be held at the College of Tcchnology, Sackville Street, Manchester, 1, there will be a programme of some 40 lectures dealing with a variety of subjects from printed and potted circuits to electromedical equipment.
Among the demonstrations in the Research Section will
be one showing the principles of colour television by Ferranti, and another of electro-acoustics provided by the B.S.R.A.
The exhibition catalogue (price 1s 6 d) will be available early in July from W. Birtwistle, 17, Blackwater Street, Rochdale, Lancs, to whom applications (enclosing a stamped addressed envelope) should be made for free exhibition and lecture tickets. The exhibition opens on the first day at noon and on subsequent days at $10 \mathrm{a} . \mathrm{m}$., and cioses at $10 \mathrm{p} . \mathrm{m}$. each day except the 18 th ($7 \mathrm{p} . \mathrm{m}$.) and 21 st (9 p.m.).

CORONATION HONOURS

Dr. E. C. Bullard, M.A., F.R.S., who has been director of the National Physical Laboratory since 1949 and was previously professor of physics at Toronto University, is among the new Knights Bachelor created by H.M. the Queen to mark her Coronation.
F. S. Barton, M.A., B.Sc., M.I.E.E., who is among the new C.B.E.s, has been Principal Director of Electronic Research and Development (Ministry of Supply) since 1951. He joined the Radio Department of the Royal Aircraft Establishment at Farnborough in 1922 and became deputy head of the department in 1936. For five years ($1941 / 46$) he was chief radio engineer for the British Air Commission (Washington).
F. C. McLean, B.Sc., M.I.E.E., deputy chicf engineer of the B.B.C., is appointed C.B.E. in the Honours List. He was already a Member of the Order. He has been with the B.B.C. since 1936.

Among the new Officers of the Order of the British Empire (O.B.E.) are :-
W. H. Grinsted, M.B.E., F.C.G.I., M.I.E.E., chief telecommunications engineer of Siemens Bros. \& Co.
E. L. E. Pawley, M.Sc.(Eng.), M.I.E.E., who has been head of the Engineering Services Group of the B.B.C. for the past 18 months. He joined the Corporation in 1931.
W. R. Piggott, principal scientific officer at the D.S.I.R. Radio Research Station, Slough.
W. West, B.A., M.I.E.E., staff engineer at the Post Office Research Station.
H. J., H. Wassell, chief radar development engineer of Marconi's Wireless Telegraph Co., Ltd.

F. S. BARTON (C.B.E.)

F. C. McLEAN (C.B.E.)

Among the new Members of the Order of the British Empire (M.B.E.) are : -
N. H. Aldersley, radio officer on the m.v. Australia Star employed by Siemens Bros. \& Co., Led.
W. G. Allen, senior experimental officer, Directorate of Electronics Research and Development (Air), Ministry of Supply.
R. S. Bastin, who was until recently chief wireless officer in the Gilbert and Ellice Islands.
R. T. Lakin, chief engineer of the Whiteley Electrical Radio Co., Ltd., of Mansfield.
R. H. Linnell, superintendent of the B.T-H. Radar Factory at Leicester.
E. E. Spillan, telecommunications technical officer in the Ministry of Civil Aviation.

The British Empire Medal was awarded to W. T. J. Cox, radar chain installation engineer, Marconi's W.T. Co., dnd L. W. Kyle, radio mechanic in the telecommunications section of the Ministry of Civil Aviation.

PERSONALITIES

H. Andrewes, O.B.E., M.I.E.E., B.Sc., A.C.G.I., who received his technical training at the City and Guilds College and joined the Dubilier Condenser Co. in 1945, has been appointed technical sales executive of the company. During the last war he served in the R.A.F. as signals officer and later as chief radar oflicer, Base Air Force South East Asia, with the rank of Wing Commander. While with Dubilier's, he has been responsible for the design, manufacture and installation of test equipment for the quality control of the company's products.
A. E. Bennett, the new chicf engineer in charge of the Dubilier Condenser Company's laboratory, ioined the company in 1926 as laboratory assistant. He received his college-works training at Ferranti, Lid., Hollinwood, Lancs. In his new position he will be responsible for the design and development of the company's products.

George J. McDonald, B.Sc.(Hons.), A.M.I.E.E., deputy technical manager of the Marconi International Marine Communication Co. since 1949, has been appointed technical manager. He graduated from Glasgow University and in 1935 joined Marconi's W.T. Company, where he was engaged in rescarch work on d.f. techniques. During the war he was engaged on Naval communications work, and in 1949 transferred to the Marconi Marine Company.

L. H. Bainbridge-Bell, long known as a stalwart campaigner in the interests of ciear presentation of technical information particularly in circuit diagrams, is retiring in August from the Admiralty Signal and Radar Establishment which he joined in 1939. He hopes to continue his mission in other fields. It will be recalled that he was granted an award by the Royal Commission on Awards to Inventors for his contribution to the development of radar.
K. Higginson, the well-known technical representative of the Dubilier Condenser Co., Ltd., which he joined in 1934, has retired. Betore ioining Dubilier he was chief engineer of Oliver Pell Control, Ltd. He hopes to be able to make use of his wide knowledge of the radio industry as a conSultant for technical publicity. His address is 322, Richmond Roact, Kingston-on-Thames, Surrey (Tel.: Kingston 8072).
W. A. Scarr, M.A., who was president of the Radio Socicty of Great Britain during 1950 and 1951, has been elected an honorary member of the Society. (There are only eight other honorary members.) Mr. Scarr, who graduated from Cambridge shortly after the 1914-18 war, is an educationist and seven years ago ioined the British Council as director of the Students' Department.
E. Morgan, who, as announced last month, has joined the Plessey Co., was an assistant to and not, as stated, the superintendent engineer (transmitters) in the B.B.C. E. F. Wheeler holds this position.

OBITUARY

Brigadier John B. Hickman, C.B.E., M.C., M.A., who was managing director of British Telecommunications Research, Ltd., and was on the boards of A.T. \& E. (Bridgnorth), Ltd., Automatic Telephone \& Electric Co., Ltd., and Hivac, Ltd., died suddenly on June 3rd at the age of 54 . Throughout his army career he was in radio and held many technical administrative positions, including deputy chief inspector of electrical and mechanical equipment (1941-44), deputy director of signals (equipment) at the War Office (1944-45) and Director of Telecommunications Research and Development, Ministry of Supply, from $19+5$ until his retirement from the army in 1949, when he ioined B.T.R.

Alfred Weedon Hall, who has one of the team of engineers who assisted C. S. Franklin in the development of the Marconi short-wave beam system in the 1920s, died on May 22nd at the age of 60 . He ioined Marconi's W.T. Co. as a testroom assistant in 1913, and after service in the Navy during
the first world war returned to the company in 1919. He was largely concerned with the design and installation of short-wave transmitters until 1943, when he was lent to the Admiralty for research work. Mr. Hall returned to Marconi's in 1946 and was latterly in charge of a technical liaison section.

IN BRIEF

Broadcast Licences.-During April the number of television licences in the U.K. increased by 60,891 , making a total of $2,203,343$. There were $10,523,105$ "sound" licences and 186,338 for car radio sets current at the end of the month, making a total of $12,912,786$.

Transistor Standards.--Electrical specifications for transistors, supplementing those covering physical standards which have been in use for some months, have been drawn up for the U.S. Services and the Joint Electron Tube Engineering Council (America's B.V.A.). According to a report in Electronics, transistors will be supplied with 2 -in leads, which if not required for soldering direct into circuits may be cut and spaced to fit standard 5 -pin in-line sub-miniature valve holders. The emitter and collector leads will occupy sockets one and five and the base lead the socket next to the emitter.

Automatic Computing.-A summer school in programme design for automatic digital computing machines will be held in the University Mathematical Laboratory at Cambridge from September 22nd to October 2nd. A detailed syllabus and form of application for admission may be obtained from G. F. Hickson, M.A., secretary of the Board of Extra-Mural Studies, Stuart House, Cambridge, to whom the completed application form should be returned by July 18th.
R.I. Chub.-At the 22nd annual general meeting of the Radio Industries Club, Edward E. Rosen, chairman and managing director of Ultra Electric, Ltd., was elected president in succession to Lord Brabazon of Tara. The vice-presidents are A. J. Dew, H. de A. Donisthorpe (G.E.C.), A. J. P. Hytch (B.B.C.), and J. H. Williams (R.G.D.). The new chairman of the committee is H. A. Curtis (R.T.R.A.) with R. F. PayneGallwey (Erie) as vice-chairman. It was reported at the meeting that the membership of the parent club (London) is now 794 and that there are six affiliated clubs in other parts of the country.

Radio Section of the I.E.E. continues to have the largest membership of any of the four specialized sections of the Institution and again held more meetings than any other section during the last session (25). Of the Institution's total membership of 37,782 at the end of March, 4,811 were members of the Radio Section.

Television Society Council. -The four vacancies on the Council of the Television Society have been filled by the election of the following Fellows: L. S. Allard (G.E.C. Research Laboratories), T. Kilvington (Post Office Radio Research Branch), T. M. C. Lance (Cinema-Television) and Dr. W. J. Thomas (Norwood Technical College).

South Coast Reception.-The permanent low-power (2 kW) transmitter to provide improved reception of the B.B.C. Home Service along the South Coast east of Beachy Head is to be erected near Bexhill. This transmitter will operate on $1,457 \mathrm{kc} / \mathrm{s}$ and will replace the low-powered temporary station at Hastings towards the end of this year.

Egypt's new air-cooled $100-\mathrm{kW}$ s.w. transmitter at Abu Zaabal, near Cairo, which was supplied by Marconi's, has now been brought into service and operates on six frequencies. A new Marconi 100 kW medium-wave transmitter ($620 \mathrm{kc} / \mathrm{s}$) is in course of construction.
S.O.S.-Commenting on a recent criticism of the use of the $500-\mathrm{kc} / \mathrm{s}$ frequency for both marine traffic and distress calls, two writers in the founal des Télécommunications state that the composition of the distress signal is such that it is received through the most intense interference. The writers add, "We, in our many years' ship and coast station experience in a part of the world with very dense ship traffic, never heard of a single case of an S.O.S.-signal 'drowned' in congested traffic on $500 \mathrm{kc} / \mathrm{s}$."

Canadian Television Plans announced by the C.B.C. include the expenditure of over $\$ 6 \mathrm{M}$ on new stations in Vancouver, Winnipeg and Halifax (all of which are expected to be in operation in the late autumn) and a second transmitter for Montreal, It is also planned to extend the inter-city television relay network which at present links Montreal, Ottawa and Toronto.
U.S. Television Density.-A chart published in the May issue of Electronics shows that, in 30 U.S. television areas in which there are 22.3 million homes, there are 19.8 million television sets. The figures, provided by the National Broadcasting Companv, show that in these 30 areas television density is about 89%. In the other 46 areas listed, television density is only 18%. Of the 1.9 million homes in New York there were on January lst slightly more than 1.8 million television receivers.

Ship-shore R/T Services, operated by Cable and Wireless, Ltd., are now available to ships in the vicinity of Lagos and Sierra Leone, West Africa, and the company is also planning to open a similar service at Bathurst.

Short-Wave Listeners are invited by the International Short Wave Ciub to send on a postcard the names of their three favourite short-wave broadcasting stations and to state briefly the reasons for their first choice. Entries for the competition must be sent by July 31 st to I.S.W.C., 100, Adams Gardens Estate, London, S.E. 16.

Amateur Show.-It is proposed by the Radio Society of Great Britain to hold the seventh annual amateur radio exhibition at the Royal Hotel, London, W.C.1, during the week November 23 rd to 28 th .

Home Construction.-The interests of the radio and television home constructor are catered for in the plans for the second National Handicrafts and Hobbies Exhibition which will be held at the Central Hall, Westminster, London, S.W.1, from September 17th to 30th.

PUBLICATIONS

Limits and Tolerances.-A new Standard (B.S. 1916, Pt. 1:1953) giving limits and tolerances for engineering, which are stated to be "sufficiently comprehensive to cover every need from the watchmaker at one end to the heavy industries at the other," has been issued by the British Standards Institution. The telecommunications industry was among the many represented on the investigating committees. Part II of the Standard will give guidance in the use of Part I, which is available from the B.S.I., 24, Victoria Street, London, S.W.1, price 10 s .

Second-hand Prices.-Maximum allowances on second-hand broadcast and television receivers purchased by the trade are given in "Used Radio and Television Set Values" prepared by the Radio and Television Retailers' Association and published by the Trader Publishing Co., Dorset House, Stamford Street, London, S.E.1. Manufacturers are listed alphabetically and the oldest broadcast receivers quoted are of 1941-1942 vintage. Older sets than those listed are stated to have no commercial value. The allowances indicated for television sets are based on the need for a new cathode-ray tube to be fitted. The 80 -page book costs 2 s 9 d , including postage.
"QRP" is the title of the monthly journal of the QRP Research Society, which was formed in 1950 to loster interest in low-power transmission. The Society is organizing a monthly contest for transmitters and listeners. The operating hours are from 1900-2100 each Sunday, and the frequency band for July is $21 \mathrm{Mc} / \mathrm{s}$. Details of the contest and membership of the Society are obtainable from the Honorary Secretary, J. Whitehead, The Retreat, Rydens Avenue, Walton-on-Thames, Surrey. A. O. Milne (G2MI), vice-president of the R.S.G.B., has been re-elected president of the QRP Society for a second year.

BUSINESS NOTES

Pye V.H.F. amplitude-modulated R / T equipment is being supplied by Rees Mace Marine, Ltd., to the Norwegian shipping authorities. Shore stations have already been installed at Tröndheim, Osio and Drammen, and a number of craft including 40 whaling vessels have been equipped.

Ground-to-Air V.H.F. transmitters, receivers and spares worth $\$ 1.4 \mathrm{M}$ are to be supplied by the British General Electric Co. to N.A.T.O. countries under a contract placed by the United States Air Force in Europe.

Marconi International Marine Communication Co. has opened a Service Depot at the Ferry Docks Pumping Station, Dover. Inspector E. Trethewey, whose telephone number is Dover 800 (ext. 79), is in charge of the Depot.

Oryx Electrical Laboratories announce that they have appointed ANTEX (Anglo-Netherland Technical Exchange, Ltd.), of 3, Tover Hill, London, E.C. 3 (Tel.: Royal 4439), as sole distributors of the Oryx sub-miniature soldering irons.

VORTEXION TAPE RECORDER

IFATURES WORTH NOTING

The amplifier, speaker and case, with detachable lid, measures $8 \frac{1}{4} \mathrm{in} . \times 22 \frac{1}{2} \mathrm{in} . \times 15 \frac{3}{4} \mathrm{in}$. and weighs 30 lb

PRICE, complete with WEARITE TAPE
DECK .. 0 0 0 .

* The noise level is extremely low and audibly the hum level and Johnson noise of the amplifier and deck are approximately equal. Only 25\% of this small amount of hum is given by the amplifier alone.
* Extremely low distortion and background noise, with a frequency response of $50 \mathrm{c} / \mathrm{s}$. $-10 \mathrm{Kc} / \mathrm{s}$., plus or minus 1.5 db . A meter is fitted for the measurement of signal level and bias level.
\star Sufficient power is available for recording on disc, either direct or from the tape, without additional amplifiers.
* A heavy mu-metal shielded microphone transformer is built in for $15-30$ ohms balanced and screened line, and requires only 7 micro-volts approximately to fully load.
\star The .5 megohm input is fully loaded by 18 millivolts and is suitable for crystal P.U.'s, microphone or radio inputs.
Ł A power plug is provided for a radio feeder unit, etc. Variable bass and treble controls are fitted for control of the play back signal.
* The power output is 3.5 watts heavily damped by negative feedback and an oval internal speaker is built in for monitoring purposes.
\star Facilities are provided for using the amplifier alone and using power output or headphones while recording or to drive additional amplifiers. \star The unit may be left running on record or play back even with $1,750 \mathrm{ft}$. reels with the lid closed.

POWER SUPPLY UNIT to work from 12 Volt Battery with an output of $230 \mathrm{v} ., 120$ Watts, 50 cycles within 1%. Suppressed for use with Tape Recorder. PRICE $£ 18000$.

TYPE C.P.20A AMPLIFIER

For A.C. Mains and 12 volt working giving 15 watts output, has switch change-over from A.C. to D.C. and "Standby " positions. Consumes only $5 \frac{1}{2}$ amperes from 12 volt baitery. Fitted with mu-metal shielded microphone transformer for 15 ohm microphone, provision for crystal or moving iron pick-up with tone control for bass and top. Outputs for 7.5 and 15 ohms. Complete in steel case with valves.

> PRICE
> \& 30.16 .0

Manufactured by
VORTEXION LIMITED, 257-263, The Broadway, Wimbledon, London, S.W. 19
Telephones: LIBerty 2814 and 6242-3
Telegrams: "Vortexion, Wimble, London."

Polytetrafluoroethylene a new
 During the past few years a new resin-like substance, Polytetrafluoroethylene has

 been developed for Commercial use. It is unique among organic compounds in its chemical inertness, in its toughness over a wide range of temperatures, and in its low dielectric losses over a wide range of frequencies.P.T.F.E. has zero water absorption with low surface tension, high impact strength and form stability, a far greater resistance to chemicals than either Gold or Platinum, and retains its strength and dielectric properties at temperatures ranging from minus $100^{\circ} \mathrm{C}$ to plus $250^{\circ} \mathrm{C}$. Its coefficient of friction is of a very low order.

The electrical losses of P.T.F.E. are substantially constant over a frequency range of 60 c. ps. to at least $300 \mathrm{Mc} . \mathrm{p} . \mathrm{s}$. and are lower than those of polythene and polystyrene. Its resistance to surface arc-over is good and on failing it vaporises instead of carbonising to leave a conducting path.
P.T.F.E. has been successfully used in a wide range of highest grade typeapproved valveholders made by The Edison Swan Electric Co., Ltd., and a range of lead-through and stand-off insulators is available. Also a number of stock sizes of Sheet, Rod, Tape, Yarn, Slugs etc., and moulded or fabridated parts can be supplied to specification.

Its arc resistance, heat resistance and low electrical losses suggest unlimited applications within the Electronic Industry.

For full technical details please apply to

THE EDISON SWAN ELECTRIC CO. LTD.

Sales Department P.T.F.E.6, 21 Bruton Street, London, W.1. TELEPHONE: MAYFAIR 5543.

Head Office: 155 Charing Cross Road, London, W.C. 2
Member of the A.E.I. Group of Companies.

By W. TUSTING

Its Basic Characteristics

FOR the measurement of resistance, the ohmmeter is probably the most widely used instrument, although it is rarely a highly accurate one. There are several reasons for its popularity. In the first place, the ohmmeter usually exists, not as a separate instrument, but combined with a multi-range voltmeter and milliammeter with the result that it is usually the cheapest form of resistance-measuring apparatus. Secondly, a continuity tester is an essential piece of test equipment and the ohmmeter performs this function without any detriment to its measuring ability. Thirdly, high accuracy of measurement is not often necessary in ordinary radio work so that its relative inaccuracy is but little drawback.

In spite of the fact that the ohmmeter is so widely used and its main characteristics are generally known, there does not seem to be such common appreciation of its finer points. Nor is it always realized that there are two basic forms of ohmmeter-the series and the shunt types. The shunt ohmmeter is not a common one, and all the ordinary ones are series olmmeters.

The basic circuit of the series ohmmeter is shown in Fig. 1. A battery E, a meter M and a resistor R_{T} are connected in series with the resistance \mathbf{R}_{x} to be measured. The current which flows is

$$
\begin{equation*}
i_{m}=\frac{\mathrm{E}}{\mathrm{R}_{\mathrm{r}}+\mathrm{R}_{x}}=\frac{\mathrm{E}}{\mathrm{R}_{\mathrm{T}}} \cdot \frac{1}{1+\mathrm{R}_{x} / \mathrm{R}_{\mathrm{T}}} \cdots \tag{1}
\end{equation*}
$$

If the current required for full-scale deflection (f.s.d.) of the meter is I_{m}, this equation can be written as

$$
\begin{equation*}
\frac{i_{i n}}{\mathbf{I}_{m}}=\frac{\mathbf{E}}{\mathbf{I}_{m} \mathbf{R}_{\mathrm{T}}} \cdot \frac{1}{1+\mathbf{R}_{x} / \mathbf{R}_{\mathrm{T}}} \tag{2}
\end{equation*}
$$

and if the values are so chosen that $\mathrm{E}=\mathrm{I}_{m} \mathrm{R}_{\mathrm{T}}$ it reduces further to

$$
\begin{equation*}
\frac{i_{m}}{\mathbf{I}_{m}}=\frac{1}{1+\mathbf{R}_{x} / \overrightarrow{\mathbf{R}_{\mathrm{T}}}} \tag{3}
\end{equation*}
$$

This simple equation describes the law of the scale of any series-type ohmmeter as long as it includes only linear circuit elements. No matter how complex the internal resistance network may be, and some are quite complicated, it can be reduced to this form.

The left-hand side of equation (3) represents the fraction of full scale by which the pointer is deflected for any value of R_{x}, while the right-hand side shows that the important factor which governs the deflection is not the absolute value R_{x} but its relation to the internal resistance R_{T}. When we say that i_{m} / I_{m} represents the fractional deflection, we are implicitly assuming that the deflection of the meter needle is proportional to current. In practice, it may not be precisely so, in which case the equation really indicates resistance in terms of the current scale of the meter. Using this equation, any currentindicating meter can have a resistance scale marked off directly from the current scale.

It can be seen that when R_{x} is infinite, the current is zero and the meter needle is not deflected at all,
whereas when \mathbf{R}_{x} is zero the current is I_{m} and the meter reads full scale. In a series ohmmeter, zero resistance always corresponds to full-scale deflection and infinite resistance to zero deflection. The resistance scale reads from right to left and always covers all possible resistance values.

When R_{x} and R_{T} are equal, $i_{m} / \mathrm{I}_{\mathrm{T}}=1 / 2$; the current is one-half of the full-scale value. It is here that the scale-reading accuracy is at its highest and it is only in the neighbourhood of this point that any reasonable accuracy is obtainable In practice, therefore, it is the value of R_{T} which sets the useful range of the instrument and to change the range it is necessary to change R_{T}. This is not the only requirement, however, for equation (3) holds only if $E=I_{n} R_{T}$ so that if R_{T} is altered it is necessary also to change $\mathrm{E} / \mathrm{I}_{m}$ by the same amount. This can be done by altering the battery voltage or the full-scale current of the meter (as by shunting it) or by a combination of both.

The requirement that $E=I_{m} \mathbf{R}_{T}$ sets a very definite limit to the resistance range obtainable in practice. Cost and durability set a limit to the sensitivity of the meter that can be used and this limit is probably reached with a $100-\mu \mathrm{A}$ meter movement. Many ohmmeters have nothing better than a $1-\mathrm{mA}$ movement. Cost, size and weight limit the battery voltage that can be used, but also it is generally necessary to keep the voltage below the value at which any noticeable shock is obtained when the \mathbf{R}_{x} terminals are touched. These factors will usually limit the battery to about 50 V .

With a $50-\mathrm{V}$ battery and a $100-\mu \mathrm{A}$ meter, the maximum value of R_{r} is $50 / 0.1=500 \mathrm{ks}$. With a $1-\mathrm{mA}$ meter it is $50 \mathrm{k} \Omega$. These correspond to midscale values of R_{x}. Good accuracy is maintained, as will be seen later, for resistance values up to three times R_{T} moderate accuracy up to 10 times R_{T} and rough indications of value are obtainable up to some 50 times \mathbf{R}_{T}.

The lower limit of resistance with the series ohmmeter is set by the maximum current which can conveniently be supplied by the battery. Unless exceptionally big cells are used this is usually around 150 mA . The smallest value of E is that of a single cell, nominally 1.5 V , so that the minimum value of R_{r} normally practicable is $1.5 / 0.15=10 \Omega$. Below the mid-scale value R_{T}, good accuracy can be obtained down to $R_{T} / 3$, moderate accuracy to $R_{T} / 10$ and rough indications to $\mathrm{R}_{\mathrm{T}} / 50$.

In general, therefore, the useful limits of a series

Fig. 1. Basic circuit of series ohmmeter.

ohmmeter extend from about 3Ω (the limit being set by the battery current) to about $4 M \Omega$ (the limit being set mainly by the meter sensitivity, but partly by battery voltage).

By differentiating equation (3) with respect to \mathbf{R}_{x} it is possible to find the relation between very small changes of resistance $J \mathrm{R}_{x}$ and the consequent change of current $\Delta i_{n i}$. This relation is

$$
\frac{\Delta i_{m}}{\mathrm{I}_{m}}=-\frac{\Delta \mathrm{R}_{x}}{\mathrm{R}_{x}} \cdot \frac{1}{2+\frac{\mathrm{R}_{x}}{\mathbf{R}_{\mathrm{T}}}+\frac{\mathbf{R}_{\mathrm{T}}}{\mathbf{R}_{x}}}
$$

This has its maximum value when $\mathbf{R}_{x}=\mathbf{R}_{\mathrm{T}}$ and then

$$
\frac{\Delta i_{m}}{\mathrm{I}}=-\frac{1}{4} \cdot \frac{\Delta \mathbf{R}_{x}}{\mathbf{R}_{x}}
$$

To see what this means, suppose that it is possible to read a small change of current Δi_{m} with a certain degree of accuracy on a meter of I_{m} full-scale deflection. Then $\Delta i_{m} / \mathbf{I}_{m}$ is the fractional change of current and, for the same accuracy of reading, it is only possible to read a fractional change of resistance four times as great. For example, if the smallest change of current that can be read on the meter is 1% of full-scale, then the smallest change of resistance that can be read is 4%. It is necessary to distinguish between a readable change and a detectable change; the latter may be only a tenth as great.

The relative reading accuracy at different parts of the scale can be expressed as

$$
\overline{2+\mathrm{R}_{x} / \mathrm{R}_{\mathrm{T}}+\mathrm{R}_{\mathrm{T}} / \mathrm{R}_{x}}
$$

and this shows how the reading accuracy of the scale varies relatively to the best position. If $\mathrm{R}_{x} / \mathbf{R}_{T}=10$ or 0.1 , the relative accuracy is $4 / 12.1 \approx \frac{1}{3}$ times, which is why, in the foregoing, a range of 0.1 to 10 times mid-scale has been classed as of only moderate accuracy. If $R_{x} / R_{T}=\sqrt{ } 10$ or $1 / \sqrt{ } 10$, the relative accuracy is $1 / 1.37$ times and this is quite a small decrease and is considered here to represent the limit of range for good accuracy.

The reason for choosing the, at first sight, peculiar value of $\sqrt{ } 10$ for the limits of each range is that it is the natural limit when the ranges are in steps of 10 , which they must be if the same resistance scale is to be used for all ranges with a simple multiplier. $\mathrm{R}_{r} / \mathrm{R}_{\mathrm{T}}=\sqrt{10}$ on one range then corresponds with $\mathrm{R}_{x} / \mathrm{R}_{\mathrm{T}}=1 / \sqrt{10}$ on the next higher range and it is necessary to read outside the $\sqrt{ } 10$ limits only on the highest and lowest ranges.

Effect of Battery Changes

Most practical difficulties with the ohmmeter arise through the range-changing arrangements and through the circuits which are needed to compensate for the effect of changes in the battery. It is an unfortunate fact that neither the internal e.m.f. of a battery nor its internal resistance is a constant, but is liable to change, not only during the life of the battery but from one battery to another. It is necessary, therefore, either to design the ohmmeter circuit so that these variations cause negligible error or to provide compensating adjustments so that their effect can be corrected. It is here that various ohmmeters differ most from each other.

The effect of a change of battery resistance is to alter the value of R_{T}, for R_{T} is the total internal resistance of the ohmmeter viewed from the R_{x} terminals.

Fig. 2. Series ohmmeter with compensation for battery e.m.f. variations by a shunt R_{3}.

Fig. 3. Ohmmeter with " constant-resistance " e.m.f. compensator.

The effect thus depends on the magnitude of the change of resistance relative to the proper value of R_{T}. On a high-resistance range, \mathbf{R}_{T} might be $500 \mathrm{k} \Omega$ and a $50-\mathrm{V}$ battery of small cells might develop an internal resistance of $2 \mathrm{k} \Omega$ at the end of its life. The resulting error is only 0.4% and by making the resistance external to the battery $499 \mathrm{k} \Omega$ and, taking the battery as having a resistance of $1 \pm 1 \mathrm{k} \Omega$, the error can be made $\pm 0.2 \%$.

On a lower range of $50 \mathrm{k} \Omega$ mid-scale there are two alternative ways of obtaining the proper conditions. One is to retain the $50-\mathrm{V}$ battery and to shunt the meter to take ten times the current. The battery resistance is then ten times as important and, in the example, the error due to it reaches $\pm 2 \%$. The alternative is to leave the meter unshunted but to reduce the battery voltage to one-tenth, which also reduces the battery resistance to one-tenth, and leaves the resistance error at $\pm 0.2 \%$. This is clearly the better course. In practice, matters are likely to be even better, because one would usually employ larger cells for a low-voltage battery than for a highvoltage one and the battery resistance is likely to be relatively much less.

In order to make battery resistance a negligible factor, it is necessary to use as sensitive a meter as possible so that the current is a minimum and to use a battery of as large-capacity cells as is practicable. On the higher-resistance ranges, it is then usually possible to ignore the battery resistance. On the lower-resistance ranges, however, compensation is nearly always needed. Such compensation is simple. It is only necessary to choose the total resistance lower than the required value of R_{T} by the amount of the maximum battery resistance and then to insert in series a variable resistance of this same maximum value. As the battery resistance increases, the variable resistor is reduced by the same amount and the total stays constant.

Compensation for changes of e.m.f. is necessary on all ranges and is more troublesome to arrange. It is hardly practicable to arrange an adjustable source of e.m.f. and what is done in practice is to alter the sensitivity of the meter to suit the e.m.f. On any range, the requirement is to have $\mathrm{E} / \mathrm{I}_{i n}=\mathrm{R}_{\mathrm{T}}$ and
compensation for changes of E is obtained if I_{m} is arranged to be proportional to E . The simplest way of doing this is to have a variable shunt to the meter.

The circuit then takes the form shown in Fig. 2, and the relevant equation analogous to equation (2) is

$$
\begin{equation*}
\frac{i_{m}}{\mathrm{I}_{m}}=\frac{\mathrm{E}}{\mathbf{I}_{m} \mathbf{R}_{\mathrm{T}}} \cdot \frac{1}{1+\mathbf{R}_{m} / \mathbf{R}_{s}} \cdot \frac{1}{1+\mathrm{R}_{\mathrm{T}} / \mathbf{R}_{x}} \tag{5}
\end{equation*}
$$

which reduces to equation (3) if $\mathrm{E}=\mathrm{I}_{m} \mathbf{R}_{\mathrm{T}}\left(1+\mathbf{R}_{m} \mathbf{R}_{s}\right)$. Here \mathbf{I}_{m} is the meter current itself and is a fixed unalterable quality, so that it is \mathbf{R}_{s} which is varied to correct for changes of $\mathrm{E} ; \mathrm{R}_{m}$ is, of course, the internal resistance of the meter.

It is not practicable to vary \mathbf{R}_{s} continuously over any range extending to infinity, so there is always some finite value in shunt with the meter. .This reduces the sensitivity and makes i_{1} greater than i_{m}. Accordingly, the resistance range obtainable is reduced.

A penalty which must be paid for having e.m.f. compensation is a reduction of the maximum resistance range and, with the simple shunt of Fig. 2, the best that can be done is to have a range of about 80% of that with the unshunted meter. This is actually about the best that can be done by any method.

Adjustment of R_{s} unfortunately affects the value of R_{T}, for \mathbf{R}_{m} and \mathbf{R}_{s} together form an effective meter of resistance $\mathbf{R}_{m} /\left(\mathbf{1}+\mathbf{R}_{m} / \mathbf{R}_{s}\right)$ and of full-scale current $\mathrm{I}_{1}=\mathrm{I}_{m}\left(1+\mathbf{R}_{m} / \mathbf{R}_{s}\right)$. The effective meter resistance is thus $\mathbf{R}_{m} \mathbf{I}_{m} / \mathbf{I}_{1}$. Now \mathbf{I}_{1} must vary in proportion to the battery voltage if R_{T} is constant and so the effective meter resistance must vary in inverse proportion to the voltage. The percentage variation of effective meter resistance is thus the same as the percentage variation of battery e.m.f. In practice, the magnitude of the change of resistance will rarely exceed about 100Ω. It is quite negligible on highresistance ranges, but is a major factor on lowresistance ranges.

Range Changing

The variations of resistance can be very greatly reduced by using the form of compensation shown in Fig. 3. Here, a potentiometer R_{1} is used and arranged so that one side of it acts in series with R_{2} as a variable shunt, while the other side puts resistance in series with \mathbf{R}_{m}. There is an optimum position for the slider on R_{1} at which the resistance is a maximum and this corresponds to an equal division of the current i_{1} between the two paths. Consequently, the two paths are then of equal resistance and the total resistance viewed from the slider is $\left(\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{m}\right) / 4$. The current i_{1} is twice i_{m}. At other settings of the slider the resistance falls, but only slightly for small changes of i_{1} / i_{m}.

The change of resistance is of the order of a quarter or a fifth of that with the simple shunt of Fig. 2, which is a considerable improvement. Unfortunately, however, the ratio of i_{1} to i_{m} is much larger, being about 2:1 instead of some 1.2:1. This means that it restricts the maximum resistance range more.

For range changing, it is necessary at some stage to shunt the meter or to do some equivalent thing. With neither Fig. 2 nor Fig. 3 is a simple meter shunt satisfactory. In Fig. 2, a meter shunt calls for a change of value of \mathbf{R}_{s} and separate zero-adjusting variable resistors are needed for each range. As well as taking up a lot of space, they become expensive.

The same thing applies to Fig. 3 if the meter itself is shunted unless, at the same time, resistance is inserted in series to keep the total resistance of the effective meter constant. This is satisfactory, except that the low-resistance ranges are limited by a high effective meter resistance. An alternative is to shunt not the meter itself but the whole meter plus compensator. This would be ideal if the resistance were truly constant but as it is not it makes the e.m.f. adjustor vary somewhat from one range to another.

The most convenient arrangement depends on circumstances and some commercial instruments use one method of compensation for some ranges and another for other ranges. Where the aim is to obtain the widest possible resistance range, with especial emphasis on high values, however, the arrangement shown in Fig. 4 is one of the best, if not the best. This is basically the circuit of Fig. 2 with the resistances R_{1} and R_{2} added. The resistance R_{1} is made so large compared with \mathbf{R}_{s} and \mathbf{R}_{m} together that their variations are swamped. Then R_{2} is the shunt for increasing the current on low ranges. R_{A} is the compensator for battery resistance and R_{s} the compensator for e.m.f. variations. If the resistor values are precise and the same battery is used for all ranges, the adjustments of R_{A} and R_{s} hold for all ranges.

The equation for this circuit is quite a simple one and is
$\frac{i_{m}}{\mathbf{I}_{n}}=\frac{\mathbf{E}}{\mathbf{I}_{m} \mathbf{R}_{\mathrm{T}}} \cdot \frac{1}{1+\mathbf{R}_{m} / \mathbf{R}_{s}} \cdot \frac{1}{1+\mathbf{R}_{\mathbf{1}}^{\prime} / \mathbf{R}_{2}} \cdot \frac{1}{1+\mathbf{R}_{x} / \mathbf{R}_{\mathrm{T}}}$ where $\mathbf{R}_{\mathrm{T}}=\mathbf{R}+\mathbf{R}_{\underline{2}}{ }^{\prime}+\mathbf{R}_{\mathrm{A}}+\mathbf{R}_{B}$

$$
\mathbf{R}_{2}^{\prime}=\frac{\mathbf{R}_{1} \mathbf{R}_{2}}{\mathbf{R}_{1}^{\prime}+\mathbf{R}_{2}} ; \mathbf{R}_{1}^{\prime}=\mathbf{R}_{1}+\frac{\mathbf{R}_{m} \mathbf{R}_{s}}{\mathbf{R}_{m}+\mathbf{R}_{s}}
$$

and R_{B} is the battery resistance.
This circuit is so important that it is of interest to consider the detailed design of an ohmmeter embodying it. In spite of its basic simplicity, the design is a little intricate and it is probably both clearest and shortest to set out the steps rather in the form of a drill. In the following the references are to Fig. 4; values of current for any value of R_{x} are indicated there by i, i_{1} and i_{m}. Corresponding currents for $\mathbf{R}_{x}=0$ are $\mathbf{1}, \mathbf{I}_{1}$ and \mathbf{I}_{m}.

Step 1. Knowing \mathbf{I}_{m} and \mathbf{R}_{m}, which are characteristics of the meter, compute the range of values required for \mathbf{R}_{s} to compensate for variations in the e.m.f. of the battery, bearing in mind that the current I_{1} is proportional to the e.m.f. The necessary relation is

$$
\frac{\mathbf{R}_{s}}{\mathbf{R}_{m}}=\frac{1}{\mathrm{I}_{1} / \mathbf{I}_{m}-1}
$$

Example 1. Let $\mathbf{I}_{m}=100 \mu \mathrm{~A}, \mathbf{R}_{m}=531.5 \Omega$ and the e.m.f. per cell be 1.3 V to 1.67 V .

Assume a minimum value for I_{15} which will occur

Fig. 4. Basic circuit of a practical ohmmeter with both resistance and e.m.f. compensation; R and R_{2} are altered to change the range.
when the e.m.f. is 1.3 V per cell, of $1.1 \mathrm{I}_{m}$. When the e.m.f. is 1.67 V per cell I_{1} will be $1.1 \mathrm{I}_{m} \times 1.67 / 1.3$ $=1.41 \mathrm{I}_{m}$ (approx.).

At the lower current

$$
\mathrm{R}_{s}=\frac{531.5}{1.1-1}=5315 \Omega
$$

At the higher current

$$
\mathrm{R}_{s}=\frac{531.5}{(1.1 \times 1.67 / 1.3)-1}=1290 \Omega
$$

To employ standard components and ensure plenty of coverage one could make R_{s} a fixed resistor of 820Ω in series with a variable of $5 \mathrm{k} \Omega$.
Step 2. At a nominal battery voltage of 1.5 V per cell and for a current I_{1} roughly mid-way between the limits of Step 1 decide on the highest resistance range and maximum battery voltage. Also, choose I_{1} at a round figure to simplify calculation. (If $\mathrm{R}_{2}=\infty, \mathrm{I}=\mathrm{I}_{1}$.)
Example 2. From example (1) $\mathrm{I}_{1}=1.25 \mathrm{I}_{m}=125 \mu \mathrm{~A}$. For a range in the neighbourhood of $400 \mathrm{k} \Omega$ mid-scale we might choose a $45-\mathrm{V}$ battery, which would give $360 \mathrm{k} \Omega$. However, lower ranges will demand a lower-voltage battery to avoid excessive current and this can be connected in series with the $45-\mathrm{V}$ battery to give a higher voltage. With a little trial and error it is found that a $45-\mathrm{V}$ and a $6-\mathrm{V}$ battery, giving 51 V together, will allow a $400-\mathrm{k} \Omega$ mid-scale range if the current is changed to $127.5 \mu \mathrm{~A}$.
Step 3. Recalculate Step 1 on the basis of the new figures from Step 2.
Example 3. Since I_{1} is $127.5 \mu \mathrm{~A}$ at 1.5 V , it is $127.5 \times$ $1.67 / 1.5$ at 1.67 V and $127.5 \times 1.3 / 1.5$ at 1.3 V . The limits of R_{s} are thus

$$
\begin{aligned}
& \mathbf{R}_{s}=\frac{531.5}{1.275 \times 1.67 / 1.5-1}=\frac{531.5}{0.4195}=1267 \Omega \\
& \mathbf{R}_{s}=\frac{531.5}{1.275 \times 1.3 / 1.5-1}=\frac{531.5}{0.105}=5061 \Omega
\end{aligned}
$$

The previous values of 820Ω fixed and $5 \mathrm{k} \Omega$ variable are still suitable.
Step 4. Compute the limits of \mathbf{R}_{m} and \mathbf{R}_{s} in parallel using the results of Step 3.
Example 4.

$$
\begin{aligned}
& \frac{\mathbf{R}_{m} \mathbf{R}_{s}}{\mathbf{R}_{m}+\mathbf{R}_{s}}=\frac{531.5 \times 1267}{1798.5}=374.42 \Omega \\
& \frac{\mathbf{R}_{m} \mathbf{R}_{s}}{\mathbf{R}_{m}+\mathbf{R}_{s}}=\frac{531.5 \times 5061}{5592.5}=480.98 \Omega
\end{aligned}
$$

The total change of resistance is 480.98-374.42 106.56Ω. Therefore,

$$
\frac{\mathbf{R}_{m} \mathbf{R}_{s}}{\mathbf{R}_{m}+\mathbf{R}_{s}}=427.7 \pm 53.28 \Omega
$$

Step 5. For decade range steps, each range will
be one-tenth of the preceding one and the current will be ten times as great but modified by any change of battery voltage. Compute the ranges obtainable in view of the increasing battery drain.
Example 5. The top range is $400 \mathrm{k} \Omega$ mid-scale with $\mathrm{E}=51 \mathrm{~V}$ and $\mathrm{I}=127.5 \mu \mathrm{~A}$. The next range will be $40 \mathrm{k} \Omega$ with $\mathrm{E}=6 \mathrm{~V}$, so the current will be $127.5 \times$ $10 \times 6 / 51=150 \mu \mathrm{~A}$. Successive further ranges will be $4 \mathrm{k} \Omega, 400 \Omega$ and 40Ω and will take 1.5 mA , 15 mA and 150 mA respectively. A lower range still would have to be 4Ω and would take 1.5 A which is out of the question.
Step 6. $\mathrm{R}_{2}{ }^{\prime}$ should be as large as possible in order that \mathbf{R}_{1} may be large compared with $\mathbf{R}_{m} \mathbf{R}_{s} /\left(\mathbf{R}_{m}+\mathbf{R}_{s}\right)$. Choose R_{2}^{\prime} for the lowest range so that R is zero (i.e., so that $\mathrm{R}_{2}{ }^{\prime}=\mathrm{R}_{\mathrm{T}}-\mathrm{R}_{\mathrm{A}}-\mathrm{R}_{\mathrm{B}}$). Values of R_{2}^{\prime} for the other ranges, except the highest, follow at once since each is ten times the preceding one. Tabulate the results.
Example 6. On the lowest range $\mathrm{R}_{\mathrm{T}}=40 \Omega$. The battery resistance is unlikely to exceed 20Ω, so that if $R=0, R_{2}^{\prime}=20 \Omega$. Then for the other ranges the figures are as in Table 1 but the value for range 1 cannot be inserted yet.
Step 7. The value of R is $R_{T}-R_{A}-R_{B}-R_{2}{ }^{\prime}$ and, except for range 1 can be computed at once.
Step 8. On range 2 the battery current is $1=E / R_{T}$ and I_{1} is known from Step 2. Then $I / I_{1}=R_{1}{ }^{\prime} / \mathbf{R}_{2}{ }^{\prime}$. Compute \mathbf{R}_{1}^{\prime}, then \mathbf{R}_{1} by deducting $\mathbf{R}_{n} \mathbf{R}_{s} /\left(\mathbf{R}_{m}+\mathbf{R}_{s}\right)$. Example 8. $\mathrm{I}=6 / 40=0.15 \mathrm{~mA} ; \mathrm{I}_{\mathrm{I}}=0.1275 \mathrm{~mA}$, so

$$
\begin{aligned}
& \frac{\mathrm{I}}{\mathrm{I}_{1}}=\frac{150}{127.5}=\frac{60}{51} \\
& \mathrm{R}_{1}^{\prime}=20 \times \frac{60}{51}=\frac{1200}{51}=23.53 \mathrm{k} \Omega \\
& \mathrm{R}_{1}=23.53-0.429=23.102 \mathrm{k} \Omega
\end{aligned}
$$

Step 9. On range $1, R_{2}$ is infinite and $R_{2}{ }^{\prime}=R_{1}{ }^{\prime}$, so R for this range can now be found using the formula of Step 7 and a mean value of battery resistance.
Example 9. Assume $\mathrm{R}_{\mathrm{B}}=1 \pm 1 \mathrm{kS}$ then $\mathrm{R}=400-1-23.5 \overline{3}=375.47 \mathrm{k} \Omega$
Step 10. The current I is known for ranges 1 and 2 It increases ten times for each further range. Compute the values for all ranges, then I / I_{1} and $\mathbf{I} / \mathbf{I}_{1}-1$. List the values.
Step 11. Compute R_{2} from $\mathrm{R}_{2}=\mathrm{R}_{1}{ }^{\prime} /\left(\mathrm{I} / \mathrm{I}_{1}-1\right)$. List the values
Example 11. For range 2 we have $\mathrm{R}_{1}{ }^{\prime}=23.53 \mathrm{k} \Omega$, $1 / I_{1}-1=9 / 51$ so

$$
\mathrm{R}_{2}=\frac{23.53 \times 51}{9}=133.3 \mathrm{k} \Omega
$$

From the results of Table 1 the complete circuit diagram of Fig. 5 can be drawn with all values. In

TABLE 1.

Range	$\begin{gathered} \mathbf{R}_{\mathrm{T}} \\ (\mathbf{k} \Omega) \end{gathered}$	$\underset{(\underset{\mathbf{V}}{\boldsymbol{E}})}{ }$	$\underset{(\mathbf{k} \Omega)}{\mathbf{R}_{\boldsymbol{a}}+\mathbf{R}_{15}}$	$\underset{(\mathbf{k} \Omega)}{\mathbf{R}_{2}^{\prime}}$	$\underset{(\mathbf{k} \Omega)}{\mathbf{R}}$	$\underset{(\mathbf{m} \mathbf{A})}{\mathbf{I}}$	$\frac{\mathbf{I}}{\mathbf{I}_{1}}$	$\frac{\mathbf{I}}{\mathbf{I}_{1}}-\mathbf{1}$	$\begin{gathered} \mathbf{R}_{2} \\ (\mathbf{k} \Omega) \end{gathered}$
1	400	51	1 ± 1	23.53	375.47	0.1275	1	0	∞
2	40	6	0.02	20	19.98	0.15	60/51	9/51	133.3
3	4	6	0.02	2	1.98	1.5	600/51	549/51	2.1857
4	0.4	6	0.02	0.2	0.18	15	6,000/51	5,949/51	0.2017
5	0.04	6	0.02	0.02	0	150	60,000/51	59,949/51	0.020017

Fig. 5. Complete circuit ciagram of a 5 -range series ohmmeter covering about 4Ω to $4 \mathrm{M} \Omega$.
its five ranges the ohmmeter covers 12.6Ω to $1.26 \mathrm{M} \Omega$ with good accuracy, or 4Ω to $4 M \Omega$ with moderate accuracy. Outside this range it will give rough indications of resistance up to some $20 \mathrm{M} \Omega$.

If range 1 with the $45-\mathrm{V}$ battery is omitted, the top figures are all one-tenth. This would apply also to a redesigned instrument using a $45-\mathrm{V}$ battery but with a $1-\mathrm{mA}$ meter movement.

If the resistor values are precise the zero adjustments hold for all ranges except the top one, where, as the battery is changed, a readjustmeni becomes necessary. If they are not precise and a readjustment of R_{s} is made on each range this cancels the e.m.f. error, but leaves an error due to the change of \mathbf{R}_{T}. This can be quite small even for quite a large change of zero adjustment between one range and the next, depending on just where the error occurs.

It is necessary that the values of R_{2} should be especially accurate on ranges 4 and 5, for it is necessary that the e.m.f. compensation should hold accurately between these two ranges. Then \mathbf{R}_{s} can be adjusted on range 4 and R_{A} on range 5 until the meter reads zero resistance on both ranges.

The procedure for zero adjustment on any range except range 5 is to short-circuit the R_{x} terminals and to adjust R_{s} to zero ohms on the scale ; that is, to full-scale current deflection. Except on ranges 4 and 5, the setting of the resistance compensator R_{A} has a negligible effect. Having adjusted R_{s} on range 4 , adjust R_{A} on range 5 ; readjust R_{s} on range 4 and then R_{A} on range 5. Continue alternately until the meter reads zero ohms when switched to cither range. Once R_{A} has been so set it needs no further adjustment until the battery resistance changes. However, R_{s} may need slight readjustment on other ranges and will nearly always need it on range 1 . However, after a readjustment of \mathbf{R}_{s} only, R_{A} does not need further alteration until the battery resistance changes. R_{A} need be adjusted only when it is found that there is a change of zero between ranges 4 and 5 .

It is now pertinent to enquire what sort of errors are likely to exist and we shall assume that in every case the instrument is properly zeroed for the range concerned. Now $\frac{\mathrm{R}_{m} \mathrm{R}_{s}}{\mathbf{R}_{m}+\mathrm{R}_{s}}$ taries by $\pm 53.28 \Omega$, so $\mathbf{R}_{1}{ }^{\prime}$ varies by the same amount or $5328 / 23.530=$ 0.225%. In addition, there is the tolerance on R_{1}
itself. If this is $\pm 1 \%$, the variation of R_{1} is ± 0.231 $\mathrm{k} \Omega$. The total variation of $\mathrm{R}_{1}{ }^{\prime}$ is thus $0.284 \mathrm{k} \Omega$, giving an error of $\pm 284 / 23.53= \pm 1.2 \%$.

On range 1 , with $\pm 1 \%$ resistors, the possible variations are $\pm 1 \mathrm{k} \Omega$ for the battery, $\pm 3.7547 \mathrm{k} \Omega$ for R, and $\pm 0.284 \mathrm{k} \Omega$ for R_{1}^{\prime}, a total of $5.04 \mathrm{k} \Omega$ in $400 \mathrm{k} \Omega$. The error is thus $\pm 1.26 \%$.

Accuracy

On other ranges, $\mathrm{R}_{1}{ }^{\prime}$ and R_{2} come in parallel and errors have two different effects. If the errors are of the same magnitude and sign the current division ratio is unaffected, but $\mathrm{R}_{2}{ }^{\prime}$ is in error by the same percentage. If the errors are of the same magnitude but of opposite sign the current division ratio is affected but $\mathrm{R}_{2}{ }^{\prime}$ is altered very little when \mathbf{R}_{2} and $\mathbf{R}_{1}{ }^{\prime}$ are of similar magnitude. A change in the current division ratio does not affect the accuracy appreciably but merely calls for a different adjustment of \mathbf{R}_{s} to correct for it.

Let x be the fractional tolerance on $\mathrm{R}_{1}{ }^{\prime}, y$ that on \mathbf{R}_{2} and z that on $\mathbf{R}_{2}{ }^{\prime}$, then

$$
\mathbf{R}_{2}{ }_{2}^{\prime}(1+z)=\frac{\mathbf{R}_{1}{ }^{\prime}(1 \pm x) \mathbf{R}_{2}(1 \pm y)}{\mathbf{R}_{1}^{\prime}(1 \pm x)+\mathbf{R}_{2}(1 \pm y)}
$$

whence

$$
\begin{aligned}
& z=\frac{ \pm y \mathbf{R}_{1}^{\prime}(1 \pm x) \pm x \mathbf{R}_{2}(1 \pm y)}{\mathbf{R}_{1}^{\prime}(1 \pm x)+\mathbf{R}_{2}(1 \pm y)} \\
& \approx \pm y \mathbf{R}_{1}^{\prime} \pm x \mathbf{R}_{2} \\
& \mathbf{R}_{1}^{\prime}+\mathbf{R}_{2}
\end{aligned}
$$

The error z is always greatest when x and y are of the same sign, so we need only consider this. In our case, we have $x=0.012, y=0.01$. On range 2

$$
z= \pm \frac{0.01 \times 23.53+0.012 \times 133.3}{25.53+133.3}
$$

0.01165
and as $\mathrm{R}^{\prime}{ }^{\prime}$ is $20 \mathrm{k} \Omega$ this is an error of $0.233 \mathrm{k} \Omega$. The error in R is $\pm 0.1998 \mathrm{k} \Omega$ and so the error in R_{T} is $0.433 \mathrm{k} \Omega$ or 1.08%. On range 3, the error in $\mathrm{R}_{2}{ }^{\prime}$ is about $\pm 1.02 \%$, so the total error in R_{T} is just a shade over 1%.

As R_{2} falls in value, the effect of $R_{1}{ }^{\prime}$ becomes less and less and the error in R_{2}^{\prime} becomes negligibly different from the error in R_{2} alone. Range 4 will thus give 1% error, considered by itself.

On range 5 conditions are different, for ranges 4 and 5 are adjusted together to compensate for battery resistance. The e.m.f. adjustment is made on range 4 only, consequently a change in the current-division ratio between the ranges leads to an incorrect value of R_{A} and so to a change of R_{T}. The worst case occurs when the errors in $\mathrm{R}_{1}{ }^{\prime}$ and R_{2} are of opposite sign on one range and the same sign on the other. The current division ratio can then change by 2% (very nearly) between ranges.

Assume now that on range 4 battery resistance is still negligible. R_{T} may be $\mathbf{1} \%$ out and this leads to a certain setting of the total current-division ratio which is 1% different from the ideal value. This is the overall ratio set by $\mathrm{R}_{2}, \mathrm{R}_{1}, \mathrm{R}_{s}$ and R_{m}. If R_{T} is high the current-division ratio is low and vice versa. There are two possibilities. If R_{T} is high and the devision ratio of R_{2} and $\mathrm{R}_{1}{ }^{\prime}$ is low the ratio of R_{s} and \mathbf{R}_{m} becomes the correct one, but if the division ratio of R_{2} and $\mathrm{R}^{\prime}{ }^{\prime}$ is 1% high also, the ratio of R_{s} and R_{m} becomes 2% low.

Now on range 5 any error in the ratio of R_{s} and R_{m} is carried over and if on this range the currentdivision ratio of R_{2} and $\mathrm{R}_{1}{ }^{\prime}$ is in error in the opposite sense to that on range 4 , it is an extra error. Thus, if it is 1% low, the total current division ratio becomes 3%. Now on this range the value of R_{T} is adjusted with reference to the current-division ratio. It is assumed to have been set correctly on range 4 to suit the battery voltage, any error therefore leads to an equal error in R_{T} and may be as much as 3%.

Using $\pm 1 \%$ tolerance resistors throughout the electrical errors on ranges $1-4$ should be less than $\pm 1.5 \%$ and not more than $\pm 3 \%$ on range 5 . The error on range 5 can be greatly reduced if it can be arranged that the errors in R_{2} for ranges 4 and 5 are of the same sign.

To these figures must be added the reading errors of the meter used which depend mainly on the meter itself-its length of scale, the fineness of graduation of the scale, the pointer thickness, parallax and so on. In addition, there are the calibration errors. These can be small if the scale is calibrated directly using close tolerance resistors, but if it is done by calculation from the current scale of the meter, the accuracy of this current scale must be taken into account. This is only $\pm 1 \%$ over the upper regions of the scale for the usual B.S.1. grade meter.
Even when considerable care is taken, it is doubtful

Fig. 6. Basic circuit of shunt ohmmeter.

Fig. 7. Multi-range shunt ohmmeter.

Fig. 8. Idealized form of shunt ohmmeter fed from a constant-current source.

whether an overall accuracy of much better than $\pm 5 \%$ is obtainable.

While the form of ohmmeter shown in Fig. 5 is probably the one best suited to radio work, some mention should be made of the shunt ohmmeter. This has the basic circuit of Fig. 6; ignoring battery and meter resistance for the time being, conditions are arranged so that the meter reads full scale when \mathbf{R}_{x} is infinite. This requires $\mathrm{E}=\mathrm{I}_{n}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$. The connection of R_{x} then shunts some of the current from the meter and reduces its reading. When R_{x} is zero, all the current is diverted and the meter reads zero.

Like the series ohmmeter, the scale covers all possible resistance values but it is reversed left to right. Zero ohms correspond to zero current in the meter and infinite ohms to full-scale current. The basic equation is

$$
\frac{i_{m}}{\mathbf{I}_{n v}}=\frac{\mathrm{E}}{\mathbf{I}_{m}\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)} \cdot \frac{1}{1+\mathbf{R}_{\mathrm{r}} / \mathbf{R}_{x}}
$$

where $R_{T}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$.
The law of the scale is precisely the same as that of the series ohmmeter but reversed left to right, so all the earlier remarks about the reading accuracy apply with equal force. The range is still set by the value of R_{T} and the same definition of R_{r} applies namely, it is the internal resistance of the instrument viewed from the R_{x} terminals.
However, R_{T} is always lower with a shunt ohmmeter than with a series type. In Fig. 6 it is the value of R_{1} and R_{2} in parallel and is a maximum when R_{1} and R_{2} are equal. As a series ohmmeter, R_{T} would be $\mathrm{R}_{1}^{-}+\mathrm{R}_{2}=\mathrm{E} / \mathrm{I}_{m}$. As a shunt ohmmeter, the maximum value of R_{r} is $\left(\mathrm{R}_{\mathrm{I}}+\mathrm{R}_{2}\right) / 4=\mathrm{E} / 4 \mathrm{I}_{m}$. For the same battery and meter, the maximum resistance range of a shunt ohmmeter is one-quarter of that of a series ohmmeter.

Since the value of R_{T} depends on R_{1} and R_{2} in parallel but the full-scale current I_{m} upon R_{1} and R_{2} in series, it is possible to change \mathbf{R}_{r} and the midscale range without affecting the zero adjustment in any way. By using a tapped resistance for R_{t} and R_{2} the range can be changed merely by varying the position along it at which R_{x} is connected, as shown in Fig. 7. Unfortunately, the number of ranges obtainable in this way is not very large unless the battery voltage is high, for the minimum range is that of the meter resistance. With a $50-\mathrm{V}$ battery and a $100-\mu \mathrm{A}$ meter, $\mathrm{R}_{1}+\mathrm{R}_{2}$ is $500 \mathrm{k} \Omega$. The top range is thus $125 \mathrm{k} \Omega$ and lower ranges of $12.5 \mathrm{k} \Omega$ and $1.25 \mathrm{k} \Omega$ are obtainable, but a range of 125Ω is not, because it is less than the meter resistance of some 500Ω.

By shunting the meter, or using a less sensitive one, the lower ranges can be extended indefinitely but at
the expense of the beautifully simple switching of Fig. 7. If the meter is shunted, R_{1} and R_{2} must be changed also.

For low-resistance ranges, the resistance of the meter R_{2} becomes small compared with R_{1} and the ohmmeter tends to the limiting form of Fig. 8 where a constant-current source supplies the current $\mathrm{I}_{m}\left(\approx \mathrm{E} / \mathrm{R}_{1}\right)$ and $\mathrm{R}_{\mathrm{T}} \approx \mathrm{R}_{2}+\mathrm{R}_{m}$. To reduce the range to one-tenth, $\mathrm{R}_{2}+\mathrm{R}_{m}$ is shunted by $\left(\mathrm{R}_{2}+\mathrm{R}_{m}\right) / 9$ and I_{m} is increased to $10 \mathrm{I}_{m}$.

With a basic $100-\mu \mathrm{A}$ meter movement, $\mathrm{R}_{2}+\mathrm{R}_{m}$ might be 600Ω and this would be one mid-scale range. By increasing the current to 1 mA and shunting $\mathrm{R}_{2}+\mathrm{R}_{m}$, a $60-\Omega$ range could be obtained. By repeating the process, ranges of 6Ω for 10 mA , 0.6Ω for 100 mA and so on, could be obtained.

For a given low-resistance range the current is much lower than with the series ohmmeter. As against this must be set the fact that the current drain is continuous whercas in the scries ohmmeter
it flows only when R_{x} is actually connected. If it is used in the same manner as a series ohmmeter, therefore, the current may well flow for hundreds, or even thousands, of times as long as with the series type. The initial advantage of a lower current may thus be quite nullified; in fact, the battery life may be much shorter.
For reasonable battery life with the shunt ohmmeter one must acquire different habits and it is a good plan to include a "Press to Read" switch in series with the battery. But it is inconvenient.

It is largely because of this that the shunt ohmmeter is so rarely used. It is not, therefore, proposed to go into battery compensation in any great detail. It is sufficient to say that resistance compensation is usually unnecessary, for R_{1} can usually be kept large compared with changes in the battery resistance. Compensation for variations of e.m.f. is necessary and is probably best carried out by a potentiometer across the battery.

COLOUR TELEVISIDN

AS an experiment in colour television, Pyc Ltd. installed cameras on the roof of a building overlooking Parliament Square in order to televise a part of the Coronation procession. Receivers were installed at the Children's Hospital, Great Ormond Street, connected by a radio link operating at 575 Mc / s.

A demonstration was given on the previous day in which two directly-viewed receivers were used to give pictures of 16 in by 12 in and a projection set to give a picture of 4 ft by 3 ft . Some trouble occurred at times during the tests and was stated to be due to rain in one of the transmitter units. Apart from this, excellent pictures were seen, the definition and the colour rendering both being good. Compared with the directly-viewed pictures, the projected picture appeared rather "washy," however, probably because of its lower brightness.

A frame-sequential system was used with 50 complete pictures per second and 150 colour frames. At the camera, a colour disc was used but at the receiver colour tubes were employed for direct viewing. No details of the projection system were given.

The colour tubes were of the Lawrence type and were made by Chromatic Television Inc. of America. The operating principle of these tubes has been previously described'. The screen is built up in strips of three differently-coloured fluorescent materials, red, green and blue. The strips are 0.015 in wide and alternate in a regular sequence across the face of the tube. Behind each red strip is a wire of 0.004 in diameter and behind each blue strip is another similar wire. All red wires are joined together and all blue wires are similarly connected. A deflecting voltage is applied in push-pull between the two sets of wires.

The tube has a single gun and focusing and scanning are accomplished in the normal way. When the colour-deflecting voltage is zero, the wires screen the blue and red strips from the electron beam which passes between them to fall on a green strip only.

[^13]When the colour-deflecting voltage has the proper value and one polarity, it deflects the electrons passing between the wires so that they fall on a blue strip. Similarly, when the voltage has the opposite polarity the deflection is in the opposite direction and the electrons land on a red strip.
In this type of tube a typical sequence of the colour strips is Green, Blue, Green, Red, Green, Bluc, Green, Red, Green, Blue, etc., as shown in Fig. 1(a). When both sets of rods are at the same potential the colour deflection, which is subsidiary and is superimposed on the ordinary scanning deflection as a "wobble," is zero (b). When the red rods are positive and the blue negative, the colour deflection is to the red (c)

Fig. 1. At (a) is shown a section through the colour screen and colour-deflecting rods while in (b), (c) and (d) the path of the beam between a pair of rods is sketched for the three possible colour conditions.

and when the red rods are negative and the blue positive it is to the blue (d).

Post-deflection acceleration is used so that operation at around 16 kV can be secured without excessive deflecting power. The colour deflection requires a supply of about $300-400 \mathrm{~V}$ and the total capacitance of the grid wires is considerable. In its original form, this resulted in the tube's being only suitable for a frame-sequential system where, because of the low colour-repetition frequency, the necessary voltage could be developed across the high capacitance with the expenditure of quite small energy. It is stated, however, that recent developments have made it possible to reduce the deflecting power sufficiently to
render the use of the tube practicable for other systems.
Reproduction with this tube appears to be free from the irritating momentary loss of colour frames on moving the eyes which has been observed in reproducers using a rotating disc. This is probably because an effective overlap of the colour frames can be obtained by arranging for the decay time of the phosphors to be such that one colour frame is not extinguished before its successor. This is impossible with a disc.
The experiment demonstrated a considerable advance in colour television in so far as the reproduction of the picture is concerned.

Electronic organ designed by R. E. Winn and awarded the President's Trophy and the Wireless World Prize in the amateur constructors' competition.

AMATEDR (ONSTAECTORS ENHIBITION

Prizewinners in this Year's B.S.R.A. Competilion

THE competition organized by the British Sound Recording Association for the best amateur-constructed sound reproducing equipment paid tribute, both in the variety and quality of the exhibits, to the enthusiasm and skill of the Association's "Constructors Circle," which was formed recently to encourage and instruct members who have an interest in designing and building their own equipment.

The premier award went to R. E. Winn for a 5octave " electronic" organ incorporating rotary electromagnetic generators, a wide range of harmonic filters and an electro-acoustic synthetic reverberation device in which a spiral steel wire was used as a delay line. The judges also decided to award the Wireless World prize for this exhibit, on the score of ingenuity in the integration of several basic principles and for general
 planning and design.

The Committee Prize went to H . Silver for a studio-type magnetic tape recorder of comprehensive specification and excellent finish. The equipment is divided into three units. The first consists of a Type B Ferrograph tape mechanism with three leads, and the second is a combined pre-amplifier and control unit for mixing two microphones and a radio input. It provides six alternative response characteristics, and a changeover switch permits aural comparison between the incoming and the recorded programmes. The third unit comprises the main amplifiers and power supplies.

[^14]

MARCONI'S WIRELESS TELEGRAPH COMPANY LTD • CHELMSFORD ESSEX

Srandard's contributions to the coronation television network

$\star \star \star \star \star \star \star \star \star t$

* 以 Standard's'dírectcontribution
to the Coronation included a special sound reinforcement system in Westminster Abbey and sound reproduction and dis. semination with public address facilities along a major part of the route controlled by the Ministry of Works.
Wh Special large tube coaxial television cable between London and Birmingham by Standard.
(14. Standard coaxial television cable between Birmingharn and Manchester.
He Standard vestigial side-band Birmingham Manchester section of the network.
 Under contract to the B.B.C.,and \star
as a direct contribution to the Coronation, S.T.C. were solely responsible for relaying the Coronation Television programmes from Loudon to the Continent. Equipment which was installed and operated by S.T.C.comprisedfiveStandard portable S.H.F. radio links as supplied to the B.B.C. for numerous outside broadcasts since \star 1\%50. Monitoring equipment by Fiol.s/cor-hiremelles Lid., an S.T.C. associate.
\star

Standard microwave tele vision radio link relaying all programmes between Manchester and Kirl o'Shotts.

Le At Kirk o'Shotts, a television sound transmitter also by Standard.

WAVES and AERIALS

The Ether as a Transmission Line

SOME people object to analogies. They will probably object to that statement of mine too, unless I put it more precisely and say that what they object to is the use of analogies as a help in explaining or understanding things. Their objection is that an analogy doesn't prove anything, and may actually mislead. They would think it very wrong of me to try to explain to a beginner what an electric current is by talking about water flowing through pipes, because the fact that one can say some things about water in pipes that are true about electric currents in wires might lead him to suppose that if he cut the wire the electricity would gush out. They no doubt have such enlightened intellects that they can apprehend new things fully without any such crude aids. If so they are lucky, but have no right to criticize poor morons like ourselves who need some picture in our minds to help us. In any case I don't think we need bother any more about them. I can think of at least one very precise and critical and learned authority on electrical principles who does not hesitate to use analogies.

One of the pleasures of life is finding something that is a perfect fit. That is the basis of jigsaw puzzles, of course. But a good analogy is better than a jigsaw puzzle, because instead of being just an arbitrarily cut outline it is part of a beautiful natural design. Add to the pleasure of tracing such a design the satisfaction of discovering that you have two or more sets of relationships for very little more than the price (in mental effort) of one, and it is not difficult to understand why analogies are in demand. Provided one is on guard against the risk of being misled by pursuing them too far, they can be recommended.

Circuits in Space

Some time ago* I dealt with the analogy between current, voltage, resistance, series, parallel, etc., on the one hand, and voltage, current, conductance, parallel, series, etc., on the other. Having found a relationship between one lot, you can straightaway use it for the other, instead of having to learn it all up as a separate subject. Not only does it save time and effort; it is what the high-class writers call more elegant, by which they mean that the method is so neat that it gives pleasure even to think about.

If you read last month's instalment, on radio waves, I wonder if you noticed another and even more interesting analogy. You remember I assumed that most people know where they are with circuits but are somewhat hazy about the mechanism of waves in space. So I began with an electromagnet consisting

[^15]of a loop of wire and a battery, which everyone can understand more or less, and showed what would follow from the basic laws of electricity if it were dragged across the sky at high speed. The movement of the magnetic field would cause an electric field, which would drive a current causing the magnetic field which would cause the electric field which ... and so on ad inf. At a sufficiently high speed299,792,000 metres per second, to be tolerably precise -the two fields are mutually supporting, without any circuital apparatus at all. Although one can continue to think of waves of e.m.f. and (displacement) current, it is better to grow out of this circuit-bound point of view and think in terms of fields alone. A butterfly emerging from its static chrysalis probably shares the same initial difficulty in feeling at home in unrestricted three-dimensional space, but it is worth while. When that freedom has been won, current and voltage in a circuit can be regarded as just a rather special case of a general field system.

Emerging from the chrysalis can be made less painful by making full use of analogy. In finding the strength of the magnetic field we started from the fact that it is proportional to the current flowing around the path of the field. But it also depends on the path length of the field; a long path necessitates more current to maintain a given field strength. (Here, of course, is an analogy with Ohm's law that is worth stopping a moment to consider. A long circuit path necessitates more e.m.f. to maintain a given current.) The magnetic field strength, denoted by H , is propor-tional to the ampere-turns per unit length of field. In the now superseded c.g.s. system of units the unit of H -the oersted-is equal to 0.4π times the ampere-turns per centimetre length of magnetic field path. The m.k.s. system abolished the 0.4π because it doesn't make sense, and (in order to bring volts, amps, etc., into itself) substituted metre for centimetre. On the assumption that "amperes" means the total current around the magnetic field, equal to amps per turn multiplied by number of turns, the unit of H is now the amp per metre, which makes much clearer the close relationship between current in a circuit and magnetic field in space.

"Ohm's Law " of the Ether

The same sort of relationship exists between electric field and voltage; the electric field (ϵ) is measured in volts per metre. So the beginnings of an analogy between circuit and space ought by now to be seen looming through the mist. For current in amps, substitute magnetic field in amps per metre; for p.d. in volts, substitute electric field in volts per metre.

Since space is measured by distance, the appearance of the "per metre" is quite natural. Now this is where one begins to try the "fit" of the analogy, to see where it leads. The simplest relationship between voltage and current is Ohm's law; the ratio V / I in volts and amps gives the resistance of the circuit in ohms-or the impedance, if a.c. If we divide ϵ in volts per metre by H in amps per metre the metres cancel out, so the result also has the dimensions of an impedance in ohms. This idea is not particularly helpful if the fields are caused wholly or partly by circuits. Just as Ohm's law wouldn't work if field ratios were brought into it, so the corresponding law for fields makes no sense if currents and voltages, which belong to circuits, are brought in. The only situation in which fields depend exclusively on one another is when they are travelling as waves, and then the ratio ϵ / H depends on what the waves are travelling through. Last month we found that in electromagnetic waves $\epsilon=v \mu \mathrm{I}$, which in a one-metre cube is the same as $\epsilon=v \mu \mathrm{H}$. We also found that $v=1 / \sqrt{ }(\mu \kappa)$. (v is the velocity of the waves, μ the permeability of space, and κ the permittivity of space.) Substituting this in the first we get

$$
\frac{\epsilon}{\mathrm{H}}=v_{\mu}=\frac{\mu}{\sqrt{\mu \kappa}}=\sqrt{\frac{\mu}{\kappa}}
$$

In empty space, $\mu=4 \pi / 10^{7}$ and κ is practically

(b)

Fig. 1. The effect of shunting a small capacitance across a resistance can be neutralized by a small series inductance, so that the combination (a) is still equivalent to the resistance R_{0}, except for a small phase delay between the terminals and R_{0}. This can be repeated any number of times (b), giving an approximation to a transmission line with a "characteristic resistance" equal to R_{0}.

Fig. 2. How a conducting sheet causes reflection of waves by generating additional waves (shown dotted) that cancel out in the original direction and add in the reverse direction.

$1 /\left(36 \pi \times 10^{9}\right)$; putting in these values, we then get : $\frac{\epsilon}{\mathrm{H}}=\sqrt{\frac{4 \pi \times 36 \pi \times 10^{9}}{10^{7}}}=120 \pi=377$
This is the ratio that the electric and magnetic field strengths in waves through space must bear to one another ; $\epsilon=377 \mathrm{H}$. It should not be taken to mean that the electric ficld is 377 times as strong as the magnetic field, for the actual figure depends on the units employed. The only proper way to compare the two field strengths is to use a standard of reckoning that is common to both, namely energy. When that is done it is found that they are equal. The meaning of the 377 , if our analogy is a safe guide, is the impedance of space to electromagnetic waves, in ohms. We know already that ϵ and H are in phase, so we conclude that this impedance, ϵ / H, is a resistance.

Waves Along a Line

The fact that the impedance of space is a resistance may seem to be a flaw in the analogy, for a resistance in a circuit is an absorber of energy, and we know that empty space absorbs none of the energy of waves going through it. The analogy certainly does break down at this point if waves through space are compared with currents through ordinary circuits, but it can be restored by making the comparison with waves along a transmission line. This was my subject in July and August 1950; I will just recall that the action of a line also can be approached from the circuit point of view, as in Fig. 1 (a), where a resistance R_{0} is shunted by a small capacitance C. The reactance of C can be neutralized by a small series inductance L, and if the right value has been chosen the impedance between the terminals is a resistance equal to R_{0}. The process of adding C and L can be repeated indefinitely, as in Fig. 1(b), with the same result, that the terminal impedance is equal to R_{0}. An a.c. generator connected to the terminals cannot tell whether it is supplying R_{0} directly or through a long chain of reactances. The practical difference is that this chain introduces a time lag. A transmission line or cable is electrically equivalent to such a chain in which the links are so small and so numerous as to be indistinguishable. When the generator is connected to the line terminals its power flows into the line, but it is only after a time lag that it is absorbed in the actual resistance \mathbf{R}_{0}. So although the line looks to the generator like a resistance because it takes away its energy and gives none back, it does not itself actually absorb any-being made up of reactance only, it cannot-but simply passes it on to a real resistance. It is exactly in this sense that space is and is not a resistance.
$\mathrm{R}_{0,}$, the so-called characteristic resistance of a line, is well known to be equal to $\sqrt{ } \mathrm{L} / \mathrm{C}$, where L and C are the inductance and capacitance per unit length. We found that resistance to free waves is $V(\mu / \kappa)$, and it should give us no surprise to see that μ is analogous to L, and κ to C, for of course the L and C of lines and circuit parts are proportional to the μ and κ of the space around. The analogy fits even closer : if you were to calculate the capacitance between plates with an area of one square metre spaced one metre apart (assuming uniform field in the space) you would find it to be κ farads, and as the κ of space (in m.k.s. units) is $1 /\left(36 \pi \times 10^{9}\right)$ the answer is 8.854 pF . So a way of expressing the value of κ_{0} (the κ of space) that brings out its significance is as 8.854 pF per metre.

Arguing along the same lines for μ we would say that for space it is $0.4 \pi \times 10^{-6}$ or $1.257 \mu \mathrm{H}$ per metre. (Don't be misled by the fact that μ stands for both permeability and " micro"-among other things!)

Air has almost exactly the same μ and κ as empty space, so its resistance to waves is almost the same. But suppose we transmit waves through a block of glass, whose μ is the same as space but its κ might be six times as much. If so its ϵ / H, being $\sqrt{ }(\mu / \kappa)$, works out at 154 ohms. One would expect it to be lower than for air because a capacitor with glass substituted for air between the plates has a higher capacitance, which means that its impedance is less.

On the other hand magnetic materials, with a high μ / κ ratio, have a higher impedance, analogous to the higher impedance of a coil when an iron core is fitted.

Another thing that depends on μ and κ is v, the velocity of the waves. It is, in fact, equal to $1 / \sqrt{ }(\mu \kappa)$ as we have found already. So when the waves come to a block of the kind of glass just considered they slow down to $1 / \sqrt{ } 6$ of the speed, which is 122 million metres or only about 76,600 miles per second. Increasing μ also slows them, so presumably they proceed through Ferroxcube at a mere crawl.

Since in this country at least the general public still identify broadcasting stations by wavelength, it may not be realized by everyone that the wavelength of a given transmission is not fixed, like its frequency, ${ }^{*}$ but depends on what the waves are travelling through. If a station broadcasts on $1 \mathrm{Mc} / \mathrm{s}$ it is bound to push out one cycle every microsecond, but the distance travelled by a wave during that time, which is the wavelength, obviously depends on how fast it is travelling. In space it is 300 metres, and that would be the figure given in the Radio Times, but within the block of glass the wavelength of the same transmission would be only 123 metres. So that is another argument for frequencies rather than wavelengths.

Of course the same thing applies to waves along lines; that is why the peaks of successive waves are closer together along a cable with solid dielectric than they would be along an air-spaced feeder.

And so one could pursue the analogy further anc: learn a lot in the process. I recommend anyone who wants to do so to study a paper by Dr. H. G. Booker, "The Elements of Wave Propagation Using the Impedance Concept," published in the Journal of the I.E.E., Part III, May 1947. In particular, it is very enlightening to compare what happens when radio waves come up against something or other with what happens when waves travelling along a line reach the impedance at the end. If the load impedance is a resistance R_{0}, all the energy is absorbed, but if it is anything else some at least is reflected. A pure reactance, being unable to absorb any energy permanently, reflects everything.

How does a sheet of highly conducting metal appear to a radio wave that comes up against it? Not as a resistance presumably. The difference of potential in the wave will cause currents in the sheet, and these currents will cause corresponding magnetic fields additional to those of the impinging wave. So the sheet turns out to be analogous to an inductive reactance. Actually the alternating currents in it launch waves that cancel out the original waves in the original direction and double them in the opposite

[^16]Fig. 3. Simple representation of a singleturn frame aerial of height h and width w , showing how the net e.m.f. generated around it depends on a phase difference in the arriving waves.

direction, as in Fig. 2, so the net effect can reasonably be called reflection. This is analogous to a transmission line terminated by a short-circuit.
It may also remind us of the behaviour of the reflector in a television aerial, considered two months ago. At least it reminds me of my intention to finish where many radio waves finish-at the receiving aerial. The question that started off the last two instalments, you may remember, was whether the signal in the aerial was caused by the electric field or the magnetic field in a radio wave, and the conclusion was that the electrons in the aerial, whose movements are the signal current, are directly affected by the electric field, but since the electric field in radiation (in contrast to induced electric fields, close to the source) is caused directly by the travelling magnetic field there is no reason why-if it suits us-we should not leave out the electric field stage and regard the signal as being caused by the magnetic field. The calculation can be done either way, and both are bound to give the same answer. But don't add them together!

Frame Aerials

Reception by a frame aerial is easier to understand than by an open aerial. We sball assume that the arriving waves are vertically polarized (i.e., electric field vertical and magnetic field horizontal), and that the aerial is h metres high and w metres wide and has only one turn (Fig. 3). The results are applicable to an N-turn aerial by multiplying by N.

Whichever field one happens to have in mind, the horizontal parts of the aerial clearly make no direct contribution. Each vertical part receives an e.m.f. of ϵh volts, and if these are in phase they tend to drive current round the aerial in opposite directions so the net result is nil. The purpose of the horizontals is to enable the two verticals to be placed where the e.m.fs will not be in phase, so that there will be a net e.m.f. available for causing current. No amount of w is of any avail if the aerial is oriented so that the verticals are equally distant from the sender ; i.e., if the aerial receives the waves broadside on. The maximum difference in distance, equal of course to w, is when the aerial is edge on, with the sender in its plane. The difference in phase depends on the ratio of w to λ, the wavelength. The greatest difference is when w is half λ, as suggested by the waveform underneath in Fig. 3, because then the e.m.fs received by the verticals are 180° out of phase, so are exactly in phase round the aerial, giving a total e.m.f. of

- $2 \epsilon h$ volts. But in practice w is almost invariably less than $\lambda / 2$-usually much less-so the effective e.m.f. is less. Anybody who wants a little exercise in trigonometry will probably be able to prove that it is $2 \epsilon h \sin (\pi w / \lambda)$. The angle $\pi w / \lambda$ is in radians, and as the sine of an angle in radians is almost equal to the angle when it is small, " \sin " can be omitted when w is not more than about $\lambda / 10$; when this is done the formula is $2 \epsilon h w \pi / \lambda$, and we notice that $h w$ is simply the area of the aerial. For a given area, the shape of the aerial makes no difference to the amount of signal received; a circular one has the lowest resistance, other things being equal, and a square one has the lowest resistance of any rectangle. Notice too that the signal received from a given strength of field is proportional to $1 / \lambda$, that is to say the frequency.

Exactly the same results would be obtained by calculating the e.m.f. generated around the aerial by the periodic variations in magnetic flux passing through it, but most people would probably find the calculation a little harder. Obviously when the aerial is broadside-on no flux passes through it. When it is edge-on the maximum flux passes through it, but if it were of uniform strength there would be no variations and hence no signal ; the flux entering at the left would be balanced by what was leaving at the right. This agrees with our previous view of the matter, for a uniform field means zero frequency. The field in radio waves, however, is not uniform-if it were they wouldn't be waves! Along the path of the wave the field alternates, so if the rate at which flux is entering the aerial from the left happens to be at peak field strength, the rate of leaving from the right must be less (assuming w is less than $\lambda / 2$), and there is a net increase in linkage, generating an e.m.f. round the aerial.

Current in the Aerial

What makes the frame aerial relatively easy to reckon is that one can usually assume that the current is the same all round it. There is some difference owing to self-capacitance, but when the aerial dimensions are small compared with the wavelength this should not amount to much. But with an open aerial it is quite different, for the return path is via capacitance distributed all along its length, and one needs fairly advanced mathematics to cope with this.

There is no difficulty at all in calculating the e.m.f.; it is equal to ϵh, where h is the height measured parallel to ϵ. To simplify matters we shall assume that the aerial is parallel to ϵ, so h is its actual height. But the e.m.f. is of no practical interest if it does not enable one to calcúlate the current it can yield at the point where the aerial is connected to the receiver. One can measure the impedance of the aerial (including its connection to the receiver) at that point, but dividing ϵh (the received e.m.f.) by it gives a larger value of current than one in fact obtains. When testing a receiver the procedure is to connect the input through an impedance equal to that of a typical aerial to a signal generator capable of giving a known signal e.m.f. This e.m.f. is less than the e.m.f. ϵ g generated in an aerial of the same impedance yielding the same input to the receiver. One method of allowing for this is to specify an effective height, h^{\prime}, less than the actual height h, which when multiplied by the electric field strength ϵ gives the same value of e.m.f. as is required from the signal generator. For some types of aerial h^{\prime} can be calculated. In a resonant half-
wave dipole $h^{\prime}=0.63 h=0.63 \lambda / 2$; in most other types it is less.

When I first began to think about reception by an open aerial I ran into a difficulty. I was applying the basic principle that if a piece of wire is in a varying magnetic field it has generated in it an e.m.f. proportional to the rate of variation. It happens if the wire is near a coil carrying an alternating current. If the peak value of current is kept constant while the frequency is raised, the rate of field variation increases in proportion to frequency and so the induced e.m.f. increases with frequency. Now I knew that this does not apply to an open aerial worked well below its resonant frequency. Yet for a given peak value of field, the rate of variation is proportional to frequency.
I first explained this apparent contradiction to myself by saying that it was due to confusing the generation of e.m.f. by a stationary but varying field close to a circuit carrying a.c. with that by radiated waves, where the variation is due to their moving past the aerial. So even if a "d.c." radio wave were possible, in which the strength of the magnetic field did not vary at all, a steady e.m.f. would be generated by its movement. And no doubt this view could be substantiated by authorities, especially those who go in for the flux-cutting idea, for is not this what is happening? But I cut myself off from that line of retreat last month by pointing out that with fluxcutting one could never be sure unless one knew what was happening to the rest of the circuit. And this is none too clear with an open aerial, where the return path is through its capacitance spreading out vaguely into the surrounding space. But by following last month's argument, using the idea of flying electromagnets, it should be easier, for we saw that the higher the frequency the shorter the wavelength and the narrower the space each side of an aerial or other fixed line to contain the flux linked therewith. If this is still not clear the best thing is to think in terms of the electric field, whose peak value we know does not depend on frequency.

Of course, the current generated in an aerial by waves of a given strength usually does vary with frequency, but that is due to variations of impedance with frequency, which is quite another matter.

RADIO IN WORLD WAR II

EVERYONE knows that wireless has profoundly affected military strategy and tactics, though few have more than vague ideas on precisely how it is used. Now, for the first time, much detailed information has been published on the application and organization of military radio communication in the second World War. The book* in which this appears deals with the whole field of signals -including carrier pigeons-but naturally radio claims most of the limelight. The author does not discuss the technical design of Army sets, but does give the salient features of most of the well-known types, and also touches upon their relative performance.

The story of the Royal Corps of Signals in every theatre of war is told, and there are general chapters on such things as training, signal systems, Anglo-American cooperation and co-operation with the other fighting services. Apart from its historical value, the book is a valuable source of information for all concerned with the organization of communications on a big scale.

[^17]

Behind the ability to cross continents and gain a quarter of the clock in a radio-telephone call to Calcutta lies the efficiency of a highly organised system.
Telecommunications depend upon team work: this demands devotion to duty and unfailing skill from every person, every part, in the plan.
Parmeko, whose role in the vast network is the comparatively small one of supplying transformers, are nevertheless proud of their selection to such a splendid team. They are confident that the reliability of their products will continue to assure them their small but respected place.

PARMEKO of LEICESTER

Makers of Transformers for the Electronic and Electrical Industries

MEET THE FAMILY-CLOSE-UP OF A VERY PROMINENT MEMBER
 the A -2 superhet radio unit

COMPACTNESS + EFFICIENCY GIVING "FULL SIZED" RESULTS - SIZE 11年" long, 43" ${ }^{\prime \prime}$ high, 4" deep - WAVE RANGE 190 to $570 \mathrm{~m}-800$ to $2,000 \mathrm{~m}$ - PLUS VARIABLE SELECTIVITY - DELAYED AVC AND VOLUME CONTROL. H.T. CONSUMPTION $15 \mathrm{~m} . \mathrm{a} .-270 \mathrm{v}$. - LT $1.5 \mathrm{amp} .-6.3 \mathrm{v}$.

PROJECTION TELEVISION - THE FAMOUS AZ AMPLIFIERS
MINIATURE - JUNIOR - SENIOR - PHASE INVERTER SPEAKERS SCRATCH FILTERS - TRANSFORMERS AND CHOKES
£12.15.0 Plus P.T.

	SOUND SALES LTD	
WEBB'S RADIO 14 Soho Street, Oxford Street, W. 1 Telephone : GERrard 2089	WEST STREET FARNHAM, SURREY Telephone: Farnham 6461-2-3	HOLLEY'S RADIO STORES 285 Camberwell Rd., London, S.E. 5 Telephone : RODney 4988

Rational Planning of

 Radio ChannelsA Book on the Conservation of Our Natural Resources

RADIO to-day is so diverse in its uses, and so supremely important in its general utility to mankind, that it must constantly affect the life of nearly every inhabitant of the earth. But for years past it has been impossible to utilize it with maximum efficiency. This is not so surprising when one considers that frequency allocations among services have not generally been made upon the basis of technical knowledge of propagation, but largely upon methods of expediency, and upon concepts which have long since been outmoded or shown to be false.
It is very desirable that such a valuable thing as the radio spectrum be properly used, and its resources taken care of in the same way as are those of other natural assets. The authors of a recently published book* compare its conservation with that of farm lands, forest reserves, water power and mineral wealth. It would appear to the present reviewer, however, that there is some difference between the two cases, for whereas all these assets are generally under the direct control of the national governments who set up the conserving authorities, the radio spectrum is not. A closer comparison would seem to be that of the conservation of the food fishes of the sea, which, like the radio spectrum, are outside the exclusive control of any one nation. Have we any occasion to hope that when men have had so little success in conserving the resources of the abounding, but not inexhaustible, sea, they will be any more successful in their use of a more intangible thing like the radio spectrum?

The authors of the book are fully aware of the difficulties surrounding the project, but this does not deter them in their work of formulating a conservation plan. Nor should it deter others from evincing an interest in this vitally important work.

History of Frequency Allocation.-The use of the radio spectrum has developed very gradually from about the turn of the present century, its first employment being almost exclusively for ship-to-ship and ship-to-shore communication. The frequency of operation was determined largely by the dimensions of the aerial systems, which, on board ship, were limited. The Second International Conference in 1906 allocated frequencies suitable for ships on this basis, among which were 600 metres ($500 \mathrm{kc} / \mathrm{s}$) as an international calling and distress wave, for which purpose it is still retained.

Larger acrial systems developed for point-to-point communication led to the use of lower frequencies, whilst improvements in apparatus, including the

[^18]introduction of the arc and the valve, made it possible to extend the usable spectrum at the high frequency end, so that in 1917, frequencies between 20 and $1500 \mathrm{kc} / \mathrm{s}$ were in use. The development of the valve was followed by the introduction of radio-telephony and by broadcasting. By 1922 long-distance communication on frequencies between 2 and $25 \mathrm{Mc} / \mathrm{s}$ was opening up. The frequencies most suitable for broadcasting were, however, already in use by the ship services, so broadcasting had to operate in the band $550-1500 \mathrm{kc} / \mathrm{s}$, as the ships could not be moved to other frequencies. In 1927 the useful part of the spectrum was considered to extend to $25 \mathrm{Mc} / \mathrm{s}$, but the Fourth International Conference in that year found certain services already established on the higher frequencies and so could not adopt an idealized allocation plan.

New services-navigational aids, aeronautical services, land mobile services, television and v.h.f. broadcasting-rapidly came into being, and the older ones expanded, and in 1938 the Sixth International Conference attempted to deal with all their demands. From 1939 to 1947 many advances took place, including the development of radar and the use of frequencies up to $10,000 \mathrm{Mc} / \mathrm{s}$. H.F. broadcasting expanded so much that when the Seventh Conference was held in 1947 conditions in the h.f. bands were in a chaotic state. The Provisional Frequency Board was set up to prepare a master list of allocations, but this has never been accepted owing to the disagreements between the nations, and subsequent Conferences have all failed to achieve their objects.

Summing up this situation it may be said that the spectrum has become occupied with the radio services as time went on almost always before there was adequate knowledge of the behaviour of the frequencies. In the early days it was the dimensions of the aerials which determined the bands occupied, then the limitations of equipment set the limits, and latterly frequencies have had to be allocated largely on the basis of avoiding those that were already in use. The result is very far from ideal. But now that the technical knowledge of propagation of the various frequencies is available it should be possible to correct the past errors and to re-create the frequency distribution structure on a properly engineered basis.
Propagation Characteristics.-A summary of the propagation characteristics for the various radio frequencies is then given. It occupies 107 pages and forms by far the longest chapter in the book. Considering that the frequencies dealt with range from $10 \mathrm{kc} / \mathrm{s}$ to $300,000 \mathrm{Mc} / \mathrm{s}$ (the extent of the spectrum now considered usable for radio purposes) it is not surprising that even a summary of these facts occupies
so much space. The behaviour of radio waves, and the way they are affected by certain phenomena, varies so greatly throughout this huge range of frequencies that it is as if one were dealing with a totally different thing when one compares radio communication at one end with that at the other.
Notwithstanding that this is only a summary of radio propagation facts it is pretty comprehensive. Every known effect, variation and related phenomenon seems to have been touched upon. Further compression of all this mass of information is impossibleNature does not permit it. Suffice it to say that in the allocation of the frequencies of the radio spectrum in an ideal way all this information needs to be taken into account, for only if this is done can the maximum utility of those frequencies be expected. Even so it must be borne in mind that the propagation knowledge cannot even yet be regarded as being by any means complete, for in certain parts of the spectrum, and notably at the extremely high-frequency end, a great deal still remains to be learnt.

Ideal Allocations.-With all this propagation knowledge at their disposal the authors then approach the problem of allocating the available frequencies on an ideal basis, taking into account the present and prospective needs, and current trends. It is assumed that no radio services already exist, and that the money which has been spent and the knowledge gained are now available to start a new radio industry. Also that the world is peaceful and that all nations are ready to co-operate in the work of making the most efficient use of the spectrum, so that it is not necessary to consider any military or political factors.

The allocations of frequency bands are made according to the services which would require to use them, as follows.

Fixed Services.-This includes all services between specified fixed points, except certain special services. To-day there is often a multiplicity of circuits between certain points, and it is proposed to combine numbers of existing services into single ones, carrying all communication between large centres. Modern information theory indicates that there are methods of conveying more intelligence in a given band in a given time than those at present in use. Super-high-frequency relay stations are proposed, which could supply the necessary bandwidth. Such a relay system, it is stated, involving stations located within the radio horizon of each other, could be built from New York to the southern tip of South America, and from New York through Alaska, across the Behring Strait into Asia, Europe and Africa, and via a chain of islands into Australia, the greatest distance between stations being about 90 miles. This system would be capable of giving wide-band service to all major population centres of the world. Taking all possibilities into consideration, the ideal frequency allocations for fixed services are $4.25-7 \mathrm{Mc} / \mathrm{s}, 9.5-12 \mathrm{Mc} / \mathrm{s}, 15-17 \mathrm{Mc} / \mathrm{s}$, $21-$ $25 \mathrm{Mc} / \mathrm{s}, 2,500-8,000 \mathrm{Mc} / \mathrm{s}$ and $10,000-13,000 \mathrm{Mc} / \mathrm{s}$.

Mobile Services.-These are the services between fixed and mobile stations, and between mobile stations themselves, and are divided into maritime, land and aeronautical services. Radio is especially important for mobile stations, because it is often the only type of communication possible, and because communication is needed in the operation of mobile units for the protection of life and property.

Integration of a number of the present mobile services would lead to frequency economy, and a general mobile network interconnected with a fixed network
would provide much improved service. The mobile service must have frequencies for medium and longdistance communication, and frequencies between 2 and $25 \mathrm{Mc} / \mathrm{s}$ would be suitable for these purposes. There must also be provision for short-distance communication on land, on frequencies beginning at about $60 \mathrm{Mc} / \mathrm{s}$, and for short-distance communication to aircraft-near $1,000 \mathrm{Mc} / \mathrm{s}$. A band near $60 \mathrm{Mc} / \mathrm{s}$ and one near $800 \mathrm{Mc} / \mathrm{s}$ would take care of the different propagation conditions for land-mobile stations over average terrain and in built-up areas. The distress wave, which has always been at $500 \mathrm{kc} / \mathrm{s}$, would be at $2 \mathrm{Mc} / \mathrm{s}$. The ideal allocations for the mobile service are $2-4 \mathrm{Mc} / \mathrm{s}, 7.5-9.5 \mathrm{Mc} / \mathrm{s}, 12-14 \mathrm{Mc} / \mathrm{s}, 17-21 \mathrm{Mc} / \mathrm{s}$, $54-100 \mathrm{Mc} / \mathrm{s}$ and $770-900 \mathrm{Mc} / \mathrm{s}$.

Broadcast Services.-TThese are all the services intended for reception by the general public, and do not include services auxiliary to broadcasting (like radio links) which receive allocations under the fixed or mobile services. The frequency band for sound broadcasting should be such as will ensure a stable signal over large areas, and this is best achieved by ground-wave transmission on frequencies from $200-$ $1,000 \mathrm{kc} / \mathrm{s}$. V.H.F. transmissions on frequencies above $50 \mathrm{Mc} / \mathrm{s}$ are suitable for multiple-programme provision in large centres of population, with the l.f. transmitters serving less populated districts. As to h.f. "international" broadcasting, the authors do not seem to think much of it, describing it as an "inferior" broadcast service, due to the mode of propagation involved. However, to many people, such as to those at sea or residing in undeveloped or remote countries, it is often the only form of broadcasting available, a fact which the authors recognize, but which they do not appear to take account of. For, in fact, they propose to abolish h.f. broadcasting altogether, for the following reasons:- the audience is limited and specialized and it is thus uneconomic to attemtp to improve their reception; under the peaceful conditions assumed there would be no need for propaganda broadcasts; the interchange of cultural programmes could be better effected over high-quality fixed circuits or by transcriptions and tape recordings; the number of persons at sea is insufficient to justify a large amount of h.f. space. Even tropical h.f. broadcasting can often be bettered by that on l.f.

Television services require wide bands and a stable transmission medium, and provision is made for these on frequencies above those subject to ionospheric phenomena, with a band about $600 \mathrm{Mc} / \mathrm{s}$ wide to accommodate multiple programmes. The ideal allocations for the broadcast services are $0.18-1.2 \mathrm{Mc} / \mathrm{s}$ (sound), 100-700 Mc/s (television and sound) and 700$720 \mathrm{Mc} / \mathrm{s}$ (sound).

Amateur Service.-It may seem a trifle inconsistent of the authors, after treating large numbers of presentday broadcast listeners in so cavalier a fashion as to deprive them of service altogether, to be prepared to allocate any frequencies to the 100,000 or so people throughout the world who use radio as a hobby. However, the authors deem it wise to encourage amateur radio, and to make provision for wide-band as well as narrow-band types of service, so as to allow for experimentation and investigation. In the ideal plan there should be allocations for amateurs of a number of frequency bands in harmonic relation where possible, the width of which would be determined by the requirements of other services having priority. Amateurs should also be allowed to use the industrial, scientific and medical bands, for the rather strange
reason that they can often accomplish some communication even in the presence of severe interference. The ideal allocations for amateurs are bands at 3.5, 7.0, 14, $28,50,720,2,500,5,000,10,000,20,000$ and $30,000 \mathrm{Mc} / \mathrm{s}$, which, considering the width of some of these bands, seems, in a conservation scheme, to be treating the amateurs more than liberally.
Radiolocation and Navigational Services.-The aeronautical services of the world are expanding rapidly and are placing increasing reliance on radio for navigation and traffic control. Instead, however, of there being a number of different radio aids, as at present, there should be developed a complete system, and the aeronautical aids required for overland flying could all be provided in a single band centred on $1,000 \mathrm{Mc} / \mathrm{s}$. In general, this takes account of the needs of flying over land routes where control is from the ground. For long-distance navigation over seas a system using low frequencies should be used. Airborne radar should be operated in a band at $9,000 \mathrm{Mc} / \mathrm{s}$. Because the aeronautical service depends so much on radio for safety purposes and for navigation, and because the aircraft themselves are fast changing in their requirements, about twice as much spectrum space as is immediately needed should be allocated, in order to permit development.

The maritime services are considered to require a long-distance navigational aid and a short-distance aid for use in restricted waters where traffic is heavy. The long-distance aid should be the same one which is provided for long-distance aircraft over seas. Shipboard radar should provide the short-distance requirement, in conjunction with suitably placed responders, and, in some instances, with land-based radar. A medium-range radiolocation or navigation system might also be required in some areas.
Mobile units operating on land do not, at present, require a navigational service, but small bands near $2,000 \mathrm{kc} / \mathrm{s}$ and $900 \mathrm{Mc} / \mathrm{s}$ should be provided in case such a need develops. The ideal allocations for the radiolocation and navigational services are 0.12-0.18, 1.9-2.0, 900-1,900 and 8,300-9,600 Mc/s.

Special Services.-Examples of these are standardfrequency services, meteorological services and fixed and mobile services for forestry and other conservation operations, all requiring special treatment because of differences in their requirements from those of other similar services. Then there are the numerous applications for low-power "walkie-talkie" transmitters, etc. The standard-frequency service requires frequencies throughout the h.f. band, and some similar frequencies are necessary for conservation services. The bands $1-2.5$ and $20-50 \mathrm{Mc} / \mathrm{s}$ are in the frequency range where propagation changes from one type to another, and, though subject to sky-wave interference at times, are not particularly useful for skywave communication. They could well be utilized for various types of low-power special services. The band $10-120 \mathrm{kc} / \mathrm{s}$ is considered useful for certain special services intended for reception over wide areas, and a further band is necessary at $1,900-2,400 \mathrm{Mc} / \mathrm{s}$. But there remain many special uses for radio which it is impossible to consider in detail, and it is proposed that these requirements be met in the special service bands either on a shared basis or by sub-allocation. The ideal allocations for the special services are 0.01-0.12, $1.2-1.9,25-50$ and $1,900-2,400 \mathrm{Mc} / \mathrm{s}$, with standard frequency bands at $2.5,5,10,15,20$ and $25 \mathrm{Mc} / \mathrm{s}$.
Indusirial, Scientific and Medical Uses.-These are the services in which radiation is merely incidental, or,
if intended, does not convey intelligence. Examples are the use of radio for heating and for producing other reactions in certain substances. A great deal of the radiation from such devices could be prevented by suitable screening, and, since the devices do not interfere with each other, many can work in very narrow bands. Nevertheless, different frequency bands are required for different types of operation. There should therefore be a large number of bands in harmonic relation below $100 \mathrm{Mc} / \mathrm{s}$ and several bands above $100 \mathrm{Mc} / \mathrm{s}$.

Time to Change.-The authors point out that changes in the present allocations will need to be nicely timed; if they are made too soon mistakes may be made, if too late it will be more difficult and costly to have them made at all. Examples are given of the well-established reluctance on the part of some usersnotably in the maritime field-to adopt technological improvements even when the advantages of doing so have been clearly demonstrated. Many services, it can be shown, occupy parts of the spectrum not really suitable to them, and the fact that they remain where they are is largely due to economic forces which resist any change, and not to any technological limitations. If, however, the use of radio is to be conducted on a more realistic basis, so as to eliminate the present disadvantages and permit of rational development, allocation changes will have to be made, tending towards the substitution of the ideal for the present haphazard allocation plan.

Dynamic Conservation.-The last chapter gives some idea of steps which might be taken to accomplish this change, and to bring the actual allocation in line with the ideal.

For various reasons no fixed plan will mect the case: there must be a programme of dynamic conservation, in which, upon sound technical and economic principles, allocations are continually changed in favour of newer and more valuable services, as the older ones lessen in value. To this end it is necessary to consider all the uses of radio as they affect commerce, industry and the public welfare. A table of these "end uses of radio" is then given, comprising no fewer than 83 different uses to which radio is put, and by considering things in these terms a clearer view of exactly what is involved in the problem of spectrum allocation may be obtained.
" The limit of spectrum occupancy occurs when all portions of the spectrum are fully, continuously and uniformly utilized and each frequency assignment is employed by many stations so arranged that their service areas are adjacent but do not overlap." That is the definition of ideal occupancy given by the authors, but complete occupancy can never be fully realized for a variety of technical and economic limitations.

Whilst some of these can be overcome, there will always remain certain limitations set by Nature, or by the facts of social organization which it cannot be hoped to change. Technical and administrative measures which may be adopted to implement conservation should, above all, avoid hampering future development.

The following measures should be taken:-
(1) New services should be granted experimental assignments in all parts of the spectrum, but where it is shown that the functions of a new service can be performed by a non-radio service, non-radio services should be used, unless the radio service possesses overwhelming superiority.
(2) Frequency tolerances should be as small as the state of the art permits.
(3) Off-frequency operation and pirating should be rigidly suppressed.
(4) The use of guard bands should be curtailed.
(5) The most efficient modulation systems should be encouraged.
(6) Every method known for restricting the interference area of stations should be employed, such as restriction of power, suppression of harmonics, use of directional aerials, etc.
(7) Services established in unsuitable parts of the spectrum should be transferred to other regions, and outmoded services deleted.
(8) Time and geographical frequency sharing should be made use of to a much greater extent than at present, such as, for example, between military and civilian services.

So much for technical considerations. The economic factors affecting dynamic conservation are equally numerous and important, but we shall not deal with them here.

Several examples of prospective changes in allocations which illustrate the technical and economic trends are then given. But the main changes, it is said, are likely to encounter resistance from those who are required to make alterations in equipment or operating procedures. But if they are shown to be technically sound and to be of ultimate benefit, it is in the public interest that they should be made. The authors think that when this is recognized, and when the changes are made so that unduc financial hardship is avoided, this resistance will disappear, and will, in fact, be transformed into co-operation in the work of radio spectrum conservation. T. W. B.

Manufinturers’ Literature

Telecommunications Equipment; an illustrated booklet reviewing in general terms the radio and line telegraphic and telephonic equipment developed by British Telecommunications Research, and describing briefly the company's establishment at Taplow Coust, Bucks.

Timers for opening or closing circuits at intervals up to 60 seconds; short descriptions in a leaflet from the Electrical Remote Control Company, Elremco Works, East Industrial Estate, Harlow New Town, Essex.

Television Receiver, type TUG34A; a console model with a 14 -in rectangular flat-faced tube described briefly in a leaflet from Bush Radio, Power Road, London, W.4.

Galvanometers, pointer and reflecting types; brief descriptions and specifications in an illustrated catalogue of various scientific instruments from W. G. Pye \& Co., Granta Works, Cambridge.
A.C. Generator, driven by a petrol engine with a governor and producing an output of $250-300 \mathrm{~W}$ at $220-250 \mathrm{~V}, 50-60 \mathrm{c} / \mathrm{s}$, and another of $12-15 \mathrm{~V}$ d.c. for charging purposes. The engine is self-starting and has interference suppression. Specification on a leaflet from the Teddington Engineering Company, 29-31, High Street, Teddington, Middlesex.

Transmitter Capacitors, ceramic, for low- and mediumpower working, in disc, tubular, plate and pot form. A technical bulletin (No. 29) from The Telegraph Condenser Company (Radio Division), North Acton, London, W.3. Also a technical bulletin (No. 30) on Twin Mica Capacitors designed as end plates of i.f. transformer assemblies.

Miniature H.T. Rectifiers, Types RM1, RM2 and RM3. Ratings, dimensions and weights in a leaflet from Standard Telephones and Cables, Rectifier Division, Warwick Road, Boreham Wood, Herts.
A.C. Voltage Stabilizer, using a servo-mechanism and giving an output voltage continuously variable between 200 and 240 V with a regulation of within 1 per cent and an output current of $0-10 \mathrm{~A}$. Described in a leafiet from Servomex Controls, Crowborough Hill, Jarvis Brook, Sussex.

Height of the Ionosphere

New Evidence from Audio-frequency Atmospherics

AT the annual conversazione of the Royal Society on May 21 st, more than a third of the exhibits were concerned with radio and electronic subjects, and one of these, arranged by L. R. O. Storey of the Cavendish Laboratory, is likely to prove of far-reaching importance in adding to our knowledge of the upper atmosphere.

Unlike most explorations into the ionosphere in which radio transmitters and receivers are involved, this latest research has been effected with no more complicated apparatus than a $30-\mathrm{ft}$ acrial connected to an audio amplifier. Between aerial and amplifier a cathode follower and coaxial cable is interposed, presumably to enable the aerial to be erected in a site free from mains and other interference, while a magnetic tape recorder at the output from the amplifier preserves significant atmospherics for subsequent analysis.

The bandwidth of the input to the amplifier is restricted to $400-10,000 \mathrm{c} / \mathrm{s}$ and the disturbances investigated take the form of audio-frequency electromagnetic whistles, descending smoothly in frequency over periods up to 3 or 4 seconds in duration. The whistles originate in lightning discharges, and under favourable, i.e., stormy, conditions the output is reminiscent of a Ludwig Koch recording of a flight of widgeon. In some cases the whistles can be correlated with "click" type atmospherics generated by local discharges, and from the time intervals involved it is deduced that part of the initial electromagnetic pulse travels upwards through the ionosphere at vertical incidence, is deflected to follow a path coincident with the lines of force of the earth's magnetic field, crosses the equator at a height of about 7,000 miles, descends through the ionosphere at a complementary latitude in the southern hemisphere, is reflected from the earth's surface and retraces its original path, to be heard at the point of origin as a long-drawn-out whistle. The whistle starts at high pitch and descends in frequency because the speed of propagation in the ionized medium is greater for high than for low frequencies. Thus the original pulse is analysed into its component frequencies which are presented in sequence to the observer. Lightning flashes originating in the southern hemisphere are heard in the northern hemisphere as whistles which can be identified by their different frequency dispersion in time, and by the absence of the initiating "click."

The path length, and the consequent delay and frequency dispersion, will depend on the latitude of origin and at the equator no whistling atmospherics should be heard. We understand that observations are now being made to verify this prediction. An upper limit of observation is set by the increasing rarity of thunderstorms as the poles are approached.

This unexpected incursion of audio-frequency techniques into the exploration of the ionosphere has produced startling results and has already called for a drastic revision of earlier estimates of the height of the atmosphere. Full results have not yet been published and until they are it is not profitable to guess whether this high-altitude propagation is due to an extension of atmospheric ionization processes as we know them or to extra-terrestrial matter coming under the influence of the earth's field.

Manufacturers' Products

NEW EQUIPMENT AND ACCESSORIES FOR HADIO AND ELECTRONICS

Lightweight Microphones

A RANGE of new lightweight hand microphones, housed in a polythene plastic case with thumb switch, has been introduced by Lustraphone, Ltd., St. Georges Works, Regents Park Road, London, N.W.1. Type HD/54 is fitted with the CI. 51 mov-ing-coil movement, and Types HC/ 54 and HC2/54 have single- and double-button carbon microphone inserts.

The spring-loaded switch can be connected in the microphone circuit or used for rclay operation as a shorting, opening or changeover switch.

Lifeboat Transmitter

FOR installation in ships' lifcboats not normally fitted with radio, Venner Electronics, of Kingston By-Pass, New Malden, Surrey, have produced a small transmitter which automatically radiates SOS messages as long as the handle of its hand-driven generator is kept turning. It transmits on a fixed frequency of $2.182 \mathrm{Mc} / \mathrm{s}$ (the maritime R / T distress frequency) and has a range of 20 miles. The circuit consists of an EF40 crystalcontrolled electron-coupled oscillator and an EL42 power amplifier, giving an output of 1 W into the 8 -ft aerial.

The hand-driven generator is a d.c. dynamo with a 6-V i.t. winding and a $370-\mathrm{V}$ h.t. winding feeding out through separate commutators. It has a slipping clutch which prevents the voltage from rising too high and
damaging the valves. This generator also drives a tone-wheel, for imposing a $1-\mathrm{kc} / \mathrm{s}$ modulation note on the transmission, and a code disc carrying the SOS messages.

The transmitter is housed in a water-tight metal case with lugs for fixing to the underside of a thwart. The generator handle folds in and the aerial is stowed away in two sections when not in use, so the whole equipment takes up very little room. It actually measures $12 \mathrm{in} \times 6$ in $\times 5$ in and weighs 17 lb . We understand the price is in the region of $£ 30$.

Electronic Humidity Control

THE affinity of very finc glass fibre for moisture is exploited in the "Humicon" moisture measuring and control instrument made by W. H. Sanders (Electronics), Ltd., 48, Dover Street, London, W.1. A cell formed by two 6 -inch diameter perforated and rhodium-plated discs, separated by a ceramic ring, contains the fibre, and its resistance varies from $40 \mathrm{k} \Omega$ to 100 MS 2 over the range of humidity from 100 to 42 per cent. The instrument is suitable for use in temperatures ranging from 0 to 90 degrees C .
In the control unit, an a.c. energized bridge samples the cell resistance and the out-of-balance voltage can be used to operate up to three thyratron-controlled relays for auxiliary control apparatus.

The control unit works from 200250 V a.c. mains.

By "DIALLIST"

Cut and Rolled

There are, as many readers will know, two ways of manufacturing metal screws. The threads may be cut by dies; or, they may be rolled. Rolled-thread screws are far cheaper to make and they serve admirably for many purposes. One of their virtues is that they vary little in diameter from the standard for any particular size. Cut-thread screws, on the other hand, tend to become larger in diameter as the dies wear with long use and unscrupulous (or should one write unscrewpulous?) producers may be responsible for the utterance of many naughty words by their victims as these try to coax undersize nuts, made with worn taps, on to oversize screws, made with worn dies. You've been one of the victims? So have I! The moral is that it pays to buy screws of reputable make.

They Bite Wires

Speaking generally, cut-thread screws are to be preferred for precision work, particularly in the smaller gauges. Rolled-thread screws of sizes 6BA and above do all that is needed for most ordinary jobs. But there is one purpose for which they should never be used--though far too often they are. This is to clamp wires inserted into screw-down terminals. Take a close look at the end of an average rolled-thread screw, and you'll see why. At the tip there is a pronounced hollow, surrounded by a narrow rim. That rim is actually quite sharp and you do not need to do much thinking to realize the highly undesirable results of turning it hard down on to a softish copper wire. One does occasionally come across cut-thread screws with their ends tapered off to fine points and these are just as unsuitable for terminals. The goodquality cut-thread screw has a smooth, rounded tip; with it you can tighten down hard enough to make a good mechanical and electrical contact, with no risk of cutting the wire.

Stations' Ups and Downs

Many readers have been kind enough to write to me about that curious phenomenon which I
mentioned in the May number of W ireless World; the reduction in range from which many broadcasting transmitters appear to suffer after being on the air for a few years. Of the many explanations suggested I can refer to only a few in the space allotted to these notes: (1) "It was the stations near the top of the broadcast band which came in so strongly at great distances; many of these are now working on shorter wavelengths." I'm afraid that this won't hold water, for some of the most strongly received medium-wave stations used channels well below 300 metres: the original 2-kW Nuremberg was an outstanding example. (2) "People are using smaller, lower and less efficient receiving aerials nowadays." Not all of them by a long chalk; and in any event most of us now command far higher pre-detector amplification than we did 20 years ago. (3) "Many m.w. stations now use antifading aerials, which cut down skywave radiation." True; but by no means all of those whose signals have disappeared are so equipped. (4) "Some l.w. stations now have directional aerials." Agreed; but how many are directed away from this country? Certainly that of Luxembourg isn't, or it wouldn't attract British sponsors. And speaking of that particular station, do you recall
the Luxembourg Effect, once so much in evidence? We don't seem to hear anything about it to-day. All things considered, I'm afraid we haven't yet got a completely satisfying answer to the - question: Why are so many broadcasting stations at distances of 150 miles and more now so much less strongly received than once they were?

Persuasion No Use

The Postmaster-General had occasion to deplore recently the poor response to the campaign to persuade people to have the ignition systems of their cars fitted with suppressors. Readers will not need to be told that the response has indeed been lamentable, though they may not, perhaps, realize how great the proportion of unsuppressed vehicles remains. I am specially well placed for making a check, for I live on a road which carries comparatively little traffic; on the average not more than 20 cars, motor cycles or lorries pass the house in an hour. Thus, I can see individual vehicles approaching and can find out by means of the Wrotham receiver, tuned to the a.m. transmission, whether any of them is a sheep or a goat. Very few lorries or tradesmen's delivery vans fail to create a machine-gun rattle from the loudspeaker. Private vehicles have a rather better record, though most of the older ones are either unsuppressed or ineffectively suppressed. A curious point is that some car manufacturers, at any rate, seem to have decided that the letter of the law is all that they need bother

about; they will fit suppressors at the appointed time but not before. A friend who took delivery of a new car a few weeks before this was written drove it home and left the engine ticking over while going in to collect his wife. He found her cursing the snowstorm on the TV screen!

Make "Em Sit Up

You'll never stop car ignition interference by begging or persuading people to have suppressors fitted. The only way is to make it a punishable offence to own an unsuppressed vehicle. The P.M.G. said he didn't want to make such a regulation, because there was no way of enforcing it. But, saving his presence, there is. All police cars nowadays are fitted with metre-wave radio, which means that those using a.m. could act as detectors of unsuppressed motor vehicles if the noise limiter was switched out of circuit. I'm not going to suggest for a moment that large numbers of police cars should be diverted from their proper business and set to track down vehicles that radiate interference. No such thing would be necessary. All that is required is a regulation outlawing interfcring vehicles after a certain date and laying down fines, of say, £2 for the first offence and $£ 5$ for the second. Follow this up by giving wide publicity to the fact that police cars can detect unsuppressed vehicles and there would be a stampede to have suppressors fitted: you will recall how wireless and television pirates hasten to haul down the Jolly Roger when the arrival of G.P.O. detector vans is so much as rumoured.

Tailpiece

As I was writing these notes, the telephone bell rang. The call was from a friend who lives on one of the main roads from London to the South Coast, and a sad tale he had to tcll of television reception during the Whitsun holidays. He and his family had stayed at home since they prefer to make outings at less crowded times. They'd get plenty of entertainment, they thought, from the television set. Alas for human hopes! There was only one single hour in the whole three days when interference from car ignition systems did not blot out the screen images. Isn't it really time, my Lord De La Warr, to protect your $2,250,000$ television licence holders by compelling motorists to abate the nuisance by spending ten minutes and a couple of shillings at any garage?

GUARANIELD LIEE TISTS

OF AT LEAST

25,000
 OPERATIONS

MILLIONS of Bulgin Switches are still in constant use in all parts of the world and giving satisfactory service on all types of equipment. Very brief reasons are shown below.
 Send for latest colalogue No. 191/WW. Price 1/- post free.

A. F. BULGIN \& CO. LTD., BYE-PASS RD., BARKING, ESSEX
Telephone: Rippleway 3474 (5 lines)

"Only Just"

Those of you who are readers of Punch may recall a humorous drawing which appeared many years ago showing a canny Scot complete with kilt and tammy slowly and carefully counting the change which the booking clerk at the railway station had just handed to him with his ticket.

Correct, but "only just"
The irate clerk, observing him, asks sarcastically and with some asperity whether the change is not correct. The canny Scot, looking up at him with a reproving look, replies " only just."

I was reminded of this old story when reading in Wireless World (May, 1953) the obituary notice of the late Andrew Gray who for a third of a century, commencing in 1899, held responsible positions on the engineering staff of our pioneer wireless company. The tribute to his memory paid by $W . W$. starts off with the seemingly innocuous statement that "There were not many wireless engineers in Queen Victoria's days, and still fewer who dated back to the 19th-century part of the reign."

Like the Scotsman's change, this statement may be perfectly correct but most certainly "only just" correct. In fact, without having looked up any statistics, I venture to say that the statement may be incorrect. I doubt if there were any more wireless engineers in the 20thcentury part of Queen Victoria's reign than in that part of her reign in the 19th century.

The reason is simple. Queen Victoria died at 6.30 p.m. on Tuesday, January 22nd, 1901. Therefore, the length of the 20th-century part of her reign was obviously 21 days and $18 \frac{1}{2}$ hours, or, in other words, just over three weeks. Therefore, to make W.W.'s statement true some men must have become wireless engineers during those three weeks.

Of course, it is quite true that if only one electrical engineer had started to specialize in wireless during that period it would make the statement strictly accurate. If, therefore, any reader knows of a man who, not being a wireless engineer at midnight on December 31st, 1900, became one before 6.30 p.m. on January 22nd, 1901, I am sure the Editor will be glad to publish the information if only to confound me. But I hope no attempt will be made by him or readers to try and convince me that the twentieth century began on January 1st, 1900, or any similar nonsense.

A.P. and C.P.

Everybody knows that the B.B.C. has been negotiating for a piece of land in the Crystal Palace area on which to build the new high-power London television station when the Corporation's lease of the Alexandra Palace expires in three years time. Even $W . W$. admits rather cautiously in its news columns (May, 1953) that it understands this to be the case. I can, however, scarcely believe that the B.B.C. can be so foolish as to relinquish the Alexandra Palace site, for if they do, nothing is more certain than that one of the sponsored television interests will quickly mop up so valuable a site.

I do not mean, of course, that the B.B.C. should not build its new station on the Crystal Palace site: in fact, I am all in favour of it. But by 1956 we, in the London area at any rate, will all be equipped with tunable TV sets in order to get the sponsored programmes as well as the B.B.C. one. We shall then undoubtedly be demanding a second
television programme from the B.B.C. and the A.P. site, chosen with such care in 1936, could hardly be bettered for the second programme transmitter. But even if the B.B.C. is so shortsighted as not to heed my words, I'm sure that sponsored television will give us a programme from there.

V.H.F. Further Vindicated

I have from time to time protested against the B.B.C. forcing us to jump to our volume controls when, after a quiet talk has ended, they suddenly switch over to the crashing crescendos of a brass band. I have suggested many remedies, but the Editor's remarks in the May issue about the Government's apparently cooling ardour for v.h.f. broadcasting prompts me to advance yet another strong reason for its immediate adoption.
V.H.F. is obviously the ideal solution for this decibel disparity about which I have complained. With the much greater etheric elbow room in the v.h.f. band it will be possible for the B.B.C. to send quiet items like talks and such-like from one transmitter, and music and other noxious noises from another.
Of course, the B.B.C. will require twice the number of transmitters and we shall all need to use two receivers for every programme, but we shall be able to adjust each set to the volume level which best suits our depraved tastes. Thus the musical highbrows who object to such things as scale distortion will be able to have their way and we uncouth Philistines who couldn't care less about scale distortion and the like will be able to have ours.

Of course you always get a bit of distortion off centre

The HIGHEST ATTAINABLE * QUALITY of \star SOUND REPRODUCTION

Representing a unique feedback circuit development, the "Vari-Slope" pre-amplifier gives audibly better reproduction. This advance consists of variable-slope " electronic " low-pass filters operating on negative voltage feedback principles.
No Inductors ("Chokes") are used, and their disadvantages are completely eliminated. The turnover frequencies are $5 \mathrm{kc} / \mathrm{s}, 7 \mathrm{kc} / \mathrm{s}$ and $9 \mathrm{kc} / \mathrm{s}$ and the slopes of attenuation are continuously variable over the range 5 db to 50 db per octave.

Frequency amplitude curves for the "TREBLE. 3 " position ($5 \mathrm{ke} / \mathrm{s}$ turnover). Curves of the same slopes are obtained on the other two positions turning over at $7 \mathrm{kc} / \mathrm{s}$ and $9 \mathrm{kc} / \mathrm{s}$ ("-2") and "-1" positions).

The filters consist essentially of twin-Tresistor-capacity networks inserted in the return circuit of a single-loop feedback amplifier. The more obvious advantages of this electronic fcedback method over conventional choke filters include :

(a) Improved transient response characteristics (due to absence of

 the consequent reduction of "ringing."(b) Extremely low harmonic and inter-modulation distortion due to negative voltage feedback action.
(c) No discontinuities in the rates of slope when the slope control is slope when the slope control is
operated, and no change in signal operated, and no change in Signal
level at frequencies below turnlevel at frequencies below turn-
over. (Both these faults occur in over. (Both these faults occur in
variable-slope choke filters due to variable-slope choke filters due to
the slope control, altering the terminating impedance and the insertion loss.)
(d) No chokes to cause magnetic hum pick-up.
(e) Smaller size, lighter weight, greater uniformity in production.

LIST PRICE IN BRITAIN
12 Gns.

The "Point-One" TL/12 Amplifier is built to a tropical specification and used chroughout the world, including:

The British Broadcasting Corporation.
The South African Broadeasting
Corporation.
The Swedish Broadeasting Corporation.
The Swiss Broadcasting Corporation
The Italian Broadeasting Corporation

Write for fully descriptive literature
H. J. LEAK \& CO., ltd., brunel road, westway factory estate, acton, w. 3

ELECTRONIC PRECISION EQUIPMIENT LTD.

STILL AVAILABLE MAGNETIC TELEVISION TUBE

By famous maker. Specification Blue/White screen 9 Kv . ion trap triode, heater 6.3 v . at .55 amp ., 50° deflection. New, with written guarantee, offered at approximately half price, $£ 12 / 10 /-$ cach, plus 10/- carriage and insurance. H.P. terms $54 / 4 /-$ deposit and 12 monthly payments of $18 / 3$. Limited quantity, so order immediately.

Modern design, bakelite cabinet in ivory, blue or brown, complete with metal chassis punched out for speaker and 5 valves, etc. Parcel also includes moulded Perspex window, matched set of knobs, scale and hardboard back. Price 22/6. Carr. and pkg. 2/6.

PORTABLE RADIO CABINETS

Correct dimensions to take "P.W." "Mini Four" and similar midget superhet or TRF. Internal dimensions $6 \frac{1}{2} \mathrm{in}$. high $\times 5$ in. wide $\times 3$ in. deep.
Special plastic grained finish, $15 / 9$ plus $1 / 6$ postage and packing. De Luxe model covered with brown crocodile leathercloth and banded with grey lizard leathercloth, $22 / 6$ plus $1 / 6$ postage and packing.

1154 TRANSMITTER

We can offer this, unused and in original transit cases, complete with valves at $£ 6$ each-plus 12/6 carriage.

Model $3 / 4$
Model 312 has a drawer on runners and cupboard space bencath. It is also slightly wider and slightly decper than the others. Price $54 /-$.

Model 313A. Shelf and cupboard. Fitted half shelf inside cupboard. Price 37/6.
Model 313C. Drawer and cupboard, half shelf inside cupboard. Price 39/6.
Model 314. Five Drawer Chest, suitable for personal papers, ete. Price 54/-.

NON-CALLERS PLEASE ADD 5/- PER CAIBINET TO COVER CARRIAGE CHARGE.

AMPLIFIER RACK-SPECIAL LOW

This stands approximately 6 ft . high, and was made originally for the G.P.O. The top panel contains the amplifier proper, which consists of an A.C. mains-driven power pack, capable of delivery 200 mA . at 400 v . and, of course, the normal L.T. supplies, and the amplifier itself uses an MHL4 feeder and two PX25s in the output stage, giving approximately 25 watts. This top deck also contains the heavy duty output transformer. The lower panel contains the feeder unit which can be used as a pre-amplifier for microphone and gramophone work, You space for fitting a monitor speaker and an R.F space ior fitting armonitor speaker and an R.F. unit if same are required, Note that the
anode current of the $\mathrm{P} \times 25$ valve is monitored anode current of the PX25 valve is monitored by a $2 \frac{1}{2}$ in. flush meter. Further note that these amplifiers were made by the famous MARCONI company. Complete as illustrated but less valves, unused and only very slightiy storage soiled. Price $£ 5 / 10^{\prime}-$, plus $12 / 6$.

RADIOGRAM CABINET Console Type Cabinet. With full grained walnut finish, will take standard type auto change gram unit. Price, $£ 11 / 10 /-$ H.P. terms, $£ 3 / 17 /-$ deposit, and 12 monthly payments of 16/9, plus $15 /$ - carriage.
Radio Chassis to suit.
£8/19/6. H.P. terms, £3 deposit and 10 monthly payments of $13 /-$, plus 7/6 carr.
Auto Change Units. For longplaying and standard records with suitable pick-up head, £11/11/-.
SPECIAL OFFER. Cabinet Radio Chassis and Auto Changer, 29 gns, H.P. terms,
$£ 10 / 14 /-2$ deposit monthly payments of $£ 2 / 3 /-$.

LAST FEW \&3/19/6. LAST FEW warms Leotross as warms room as bathing cosbathing
lumes, $\begin{gathered}\text { cos- } \\ \text { towels, }\end{gathered}$ ${ }^{\text {lumes, }}$ towels, wide, 3 ft . high, and 5 in . deep. slove enamelled rails and works off $A C$ or $D C$ mains, consuming 650 watts. Fully guaranteed. Price £3/19/6 plus 7/6 carriage.

THIS MONTH'S SNIP

Due to a recent huge purchase of ungraded germanium and silicon crystal diodes we are able to offer these at less than cost. Also being ungraded you stand a good chance of finding one or more of the really expensive special purpose types. This month we are offering 12 assorted, all made by B.T.H. and G.E.C. for $£ 1$ post free. Every crystal is guaranteed to be in perfect working orde

LAST TIME AT THIS PRICE
We are almost sold out of 3 waveband coil packs, but if you apply quickly you may still be lucky. Manufactured by a famous com-pany-long, medium, short wavebands and gram position. Complete with circuit, $19 / 6$ post free.

GGREATLY REDUCED

CATHODE RAY TUBES VCR97, Brand new and unused, ideal for 'scope, etc Price 12/6. Carriage and insurance 5/- extra.

> anteed full picture 29/6 plus 5/- carriage and insurance.
> VCR139A. $2 \frac{1}{2}$ in., $32 / 6$ plus $2 / 6$ carriage, etc. VCR138, $3 \frac{1}{2}$ in. clectrostatic short persistence, suitable for T.V. and ideal for 3/6 carriage, etc.

VCR112.5in. electrostatic, persistence not known, 15/- each plus 5/-carriage, etc.
CV996. 6 in , electrostatic, persistence not known, 15/- each plus 5/-carriage, etc.
CV1140, CV1590, CV1546. All 12in. magnetic long persistence 54/10/- plus $10 /$ - carriage.

To advertise our latest purchase of germanpum diodes suitable for crystal sets which for crystal sets which very low price of $1 / 9$ very low price of $1 / 9$. With each we give a free blueprint of a crystal sct to be made from parts found in any junk box. You have a youngster friend who will be thrilled to make this little receiver.

A combined Radio, Radiogram and 15 in . Televisor valued at a shop price of $£ 300-£ 400$ can be yours for about $£ 75$.

THE CABINET

As the illustration shows this is a really majestic looking corner fitting console. It is constructed mostly from solid oak and oak-faced ply, and polished medium dark oak. The tube cut-out is for the standard 15 in . tube, but larger tubes can be accommodated with little difficulty. The storage space on the top will take autochanger or tape recorder and there is a sloping panel at the top which will take radio or amplifier controls. Size 50 in . high, 47 in . wide and 3 lin . deep. Price £18/-/- plus $10 /-$ carriage and insurance. Hire purchase terms: $\mathbf{\Sigma 6 / / / -}$ deposit-balance 12 monthly payments of $25 /-$.

THE TV CHASSIS

Our own Superior 15in. is, of course, suitable for all types of cabinets. This is a 20 -valve superhet constructed on one large open chassis and incorporating the latest features such as ; line E.H.T., diode damped interlace, etc. Data which is free with all orders for paris is available separately on approvalsend $7 / 6 \mathrm{~d}$ (if you feel you cannot make the receiver-return the data and 7/will be refunded to you). The cost of all the components to build this is £35/-/-, which includes valves and Cossor 15in. C.R.T. The parts may be bought by H.P. terms: $£ 11 / 14 /-$ de-posit- 12 monthly payments of $£ 2 / 7 /-$.

THE RADIOGRAM UNIT

We do not think you could do better than to buy a Collaro RC511, which is suitable for all types of records as it is three-speed with dual-purpose crystal pick-up. We made a special purchase and in consequence can offer this unit at 11 guineas, which is well below current list price. H.P. if you want it, 84/-deposit-balance over 12 months. Carriage charge 7/6.

THE RADIO UNIT
This is being designed and details will be available very shortly.

ELECTRONIC PRECISION EQUIPMENT lut.

Post orders should be addressed to :-

ELPREQ HOUSE (Ref 2), HIGH STREET, WEALDSTONE, MIDDX.

Personal shoppers however must continue to call at:-
42-46, WINDMILL HILL, RUISLIP, MIDDX.
Phone : RUISLIP 5780
(Half-day, Wednesday)
152-153, FLEET STREET, E.C.4.
152-153, FLEET STREET,
Phone: CENTRAL 2833
(Half-day, Saturday)

Phone: RUISLIP 5780 (Half-day, Wednesday)

COMMUNICATIONS RECEIVER RII55. The famous exBomber Command Receiver known the world over to be supreme in its class. Covers 5 wave ranges $18.5-7.5 \mathrm{Mc} / \mathrm{s}, 7.5-3.0 \mathrm{Mc} / \mathrm{s}$, $1,500-600 \mathrm{kc} / \mathrm{s}, 500-200 \mathrm{kc} / \mathrm{s}, 200-75 \mathrm{kc} / \mathrm{s}$, and is easily and simply adapted for normal mains use, full details being supplied. Aerial adapted for normal mains use, full details being supplied. Aerial IN MAKER'S ORIGINAL TRANSIT CASES, ONLY $£ I I / 19 / 6$.
A few used receivers, also tested working before despatch, are available at $£ 7 / 19 / 6$.
A few of the R1155N model can also be supplied. This is the latest version which covers the Trawler Bands, and in addition is fitted with ultra slow motion tuning. Used, but tested working before despatch, ONLY $£ 17 / 19 / 6$.
A factory made Power Pack, Output Stage and Speaker, contained in a black crackled cabinet to match the receiver, can be supplied at ONLY $£ 5 / 10 \mid$-. Operates receiver immediately. DEDUCT IO/-IF PURCHASING RECEIVER AND POWER PACK TOGETHER.
Please add carriage costs of $10 / 6$ for receiver, and 5 -for power pack. RECEIVERS R1355, as specified for "Inexpensive Television." Complete with 8 valves SP61, and I each 5U4G and VU 120 or VU III. Used, good condition, ONLY 29/6 (carriage etc. 5/6). RF UNITS TYPE 26 AND 27 for use with the above receiver. RF UNITS TYPE 26 AND 27 for use with the above receiver. The very popular variable tuning units, which use 2 valves EFS4
and I EC 52. Type 26 cosers $65-50 \mathrm{Mc} / \mathrm{s}$, ($5-6$ metres), and Type and I EC 52. Type 26 covers $65-50 \mathrm{Mc} / \mathrm{s}$,
27 covers $85-65 \mathrm{Mc} / \mathrm{Mc} / \mathrm{s}$, ($3.5-5$ metres).
27 covers $85-65 \mathrm{Mc} / \mathrm{Mc} / \mathrm{s}$, (3.5-5 metres).
BRAND NEW IN MAKR'S CARTO NS. ONLY $59 / 6$ each. VIBRATOR UNITS. 2 volt type, American made, delivers 67 volts at $4.7 \mathrm{~mA}, 130$ volts at 20 mA , and 1.4 v . L.T. Easily adapted for use with any battery receiver, full details being supplied. ONLY 50/- (postage $2 /$-).
6 volt type, made by The National Co. of America for use with HRO Communication Receivers, supplying 165 volts at 85 mA , fully smoothed D.C. Complete with vibrator and 6×5 rectifier in black crackle cabinet, size $7 \mathrm{in} . \times 7 \frac{1}{2} \mathrm{in} . \times 6 \mathrm{in}$. Slightly used. ONLY 39/6.
INDICATOR UNIT TYPE 62A. Contains VCR97 tube with mu metal screen, 12 valves EF50, 4 of SP61, 3 of EA50, and 2 of EB34. Built on a two deck chassis containing hundreds of conEB34. Buit on two deck chassis containing hundreds of conCONDITION IN MAKER'S TRANSIT' CASES. ONLY E7/IO/(carriage S/6).
(carriage S/6).
ADMIRALTY TEST SET TYPE SE2. For $160 / 230 \mathrm{Me} / \mathrm{s}$, this ADMIRALTY TEST SET TYPE SE2. For $160 / 230 \mathrm{Me} / \mathrm{s}$, this
contains standard $230 / 250$ y. 50 c . A.C. Mains power pack, 2 in contains standard $230 / 250$ v. 50 c. A.C. Mains power pack, 2 in
500 microamp. meter, and 7 valves as follows: 2 ea. 615 and EA50, 500 microamp. meter, and 7 valves as follows i 2 ea. 615 and EA50,
1 each $6 \times 5, V R$ I $37, C V$. 172 . Fitted in metal lined wood case with I each 6×5, VR 137, CV 172. Fitted in metal line
removable front. ONLY $50 /$-(carriage etc. $10 /-$).
6 VOLT 90 A.H. BATTERIES. By famous American makers, these have genuine hard rubber cases, and are BRAND NEW AND UNUSED IN MAKER'S PACKING. Size $8 \frac{1}{2} i n$. long $\times 6 \frac{1}{4} \mathrm{in}$. wide x $7 \frac{1}{2} \mathrm{in}$. high. ONLY $59 / 6$ (carriage, etc., 7/6).
TELESCOPIC AERIAL. Pults out of metal tube $\{5 \mathrm{in}$. long to extend to 73 in . BRAND NEW. ONLY $7 / 6$ (post 10 d.).
194 I.F. STRIP. An easily modified I.F. Strip recommended for TV constructors who want good resules at moderate cost, or for those who have built televisors but are hasing trouble in the vision or sound receivers. Can also be modified for 2 channel working as per details in " Practical Television" October issue. This 6 stage strip measures $18 \mathrm{in} . \times 5 \mathrm{in} . \times 5 \mathrm{in}$., and contains 6 valves VR 65 , I YR 92 and I of VR 56 or VR 53. Mod, data supplied. ONLY 45/- (postage, etc., 2/6). Or less Valves 19/6 (post 2/6).
208 AMPLIFIER. Ideal for conversion into a high gain TV pre208 AMPLIFIER. Ideal for conversion into a high gain TV preamp. Complete with 2 valves EF 50 . ONLY $15 /-$ (postag
CERAMIC 2 WAY 3 BANK SWITCHES, $7 / 6$ each.
CHOKES. $10 \mathrm{H} .60 \mathrm{~mA}, 3 / 9$; $30 \mathrm{H} .100 \mathrm{~mA}, 12 / 6 ; 5 \mathrm{H} .200 \mathrm{~mA}$, 6/- (postage 1/- per choke)
TRANSFORMERS. Manufactured to our specification and fully guaranteed. Upright mounting, fully shrouded normal primaries.
$425-0-425$ v. $200 \mathrm{~mA}, 6.3$ v. 4 a., 6.3 v. 4 a., 5 v. 3 a., $50 /-$
$350-0-350 \mathrm{v} .160 \mathrm{~mA}, 6.3 \mathrm{v} .6 \mathrm{a} ., 6.3 \mathrm{v} .3 \mathrm{a.}$,5 v .3 a., $42 / 6$.
$350-0-350 \mathrm{v} .150 \mathrm{~mA}, 6.3 \mathrm{v} .5 \mathrm{a}$ a, 5 r .3 a, , $32 / 6$.
$250-0-250 \mathrm{v}$. $100 \mathrm{~mA}, 6,3 \mathrm{v} .6 \mathrm{a}$., 5 v .3 a a., $32 / 6$.
Please add $2 /$ - per transformer postage.
TRANSFORMERS, FILAMENT. $6.3 \mathrm{v} .2 \mathrm{a.}, \mathrm{7/6;} 6.3 \mathrm{v} .3 \mathrm{a},$. 10/6. (Postage 1/-)
TRANSFORMERS EHT. Upright mounting. EHT for YCR 97 tube, 2,500 v. $5 \mathrm{~mA}, 2-0-2 \% .1 .1$ a., 2-0-2 v. 2 a., 37/6.
EHT'5,500 v. $5 \mathrm{~mA}, 2 \mathrm{v} .1 \mathrm{a} ., 2 \mathrm{v}$. 1 a ., $72 / 6$.
EHT $7,000 \mathrm{v}, 5 \mathrm{~mA}, 4 \mathrm{v}$. $1 \mathrm{a} ., 82 / 6$. Please add $2 /$ per transformer postage.
SPECIAL OFFER. L.T. Transformers with windings of $5 \mathrm{v} .-0-5 \mathrm{v}$. 5 amps; 5 v. $-0-5$ v. 5 amps ; 5 v. $0-5 \mathrm{v} .5 \mathrm{mps}$. By using combination of windings will give various voltages at high eurrent. Brand new and unused these have become damaged, but are still usable, the damage being confined to broken fixing lugs, and/or broken bakelite terminal panels. Formerly sold at $35 /$, now offered at $22 / 6$ (postage 2/6).
$2 \frac{1}{1}$ in. SQUARE FLANGE 0-1 M.A. METERS. Brand new. ONLY 15/-.
IOin. P.M. SPEAKERS with output trans. Brand new. ONLY 27/6 (postage 2/-).

Cash with order please, and print name and address clearly. Amounts given for carriage refer to inland only.

U.E.I. CORPORATION
 Radio Corner, 138, Gray's Inn Road, London, W.C.I.

 Phone: TERMINUS 7937.(Open until I p.m. Saturdays. We are 2 min . from High Holborn (Chancery Lane Station) and 5 min . by bus from King's Cross.)

I KW TELEGRAPH TRANSMITTERS. Two HF 300's output. Operation 3.5 mc . to 16 mc .
BC6IO TRANSMITTERS with speech amplifier, aerial tuning unit, etc. Brand new.
RCA TRANSMITTERS. Type ET-4336. Complete with speech amplifier, crystal multiplier and VFO units. Unused and reconditioned. Can be supplied with very large quantity of spares.
RCA TRANSMITTERS. Type ET- 4332 modified by R.A.F. for use on crystal or master oscillator. Complete with speech amplifier.
EX-R.A.F. II43 TRANSMITTERS.
MAGNETO 10 LINE U.C. TELEPHONE SWITCH. BOARDS (complete).
NO. 33 TRA NSMITTERS.
A.R.88D's, A.R.88LF's, A.R.77's, S27's, HRO, R. 109 and others.

AUTOMATIC HIGH-SPEED-TELEGRAPH EQUIPMENT. "BOEHME" (U.S.A.). Up to 400 signs per minute on line and wireless.
NAVY MODEL TBY- 8 TRANSMITTING-RECEIVING EQUIPMENT. Output 0,75 watts on M.C.W. telegraphy and 0.5 watts on telephony. Frequency range $28-80 \mathrm{mc}$.

All above items in excellent working condition Working demonstration upon request.

TX VALVES 803, 805, 807, 813. 814, 861, 866A, DET-16 and many others.

Large stock of Tx condensers, crystals and other components. Alignment and repair of communication receivers and all other short-wave equipment undertaken.
P.C.A. RADIO

Transmitter Division:The Arches, Cambridge Grove, London, W.6.
Tel.: RIV 3279.
Receiver Division :-
170 Goldhawk Road,
London, W. 12.
Tel.: SHE 4946.

Supersont

THE ALL-WAVE CAR RADIO

SOLE DISTRIBUTORS WANTED IN ALL PARTS OF THE
WORLD Enquiries to :

Export Manager,
CHASSAY BROS. (Pyt) LTD., Ingutsheni Road, BULAWAYO, Southern Rhodesia. or
Export Manager,
CHASSAY BROS. (Pvt) LTD. 5 St. John Street, LONDON, E.C.I.
Semi Band Spread tuning-3 bandswide range-very sensitive-wonderful tone - powerful volume - extremely compact-fits any car.
Incorporates all that is new in world Radio research.

TRE VIEWMASTER

ALL COMPONENTS IN STOCK

 ANY SINGLE ITEM AVAILABLE SEPARATELYAll models available including filter chokes Price (except Alcxandra Palace). 28per set. Alexandra Palace, 20- per set. L9 RF choke, $2 /$..

CHASSIS

Sound-Vision, 18/6. Power-Pack/Time base, $18 / 6$.
Support for S.V. chassis, $6 /$-.

G.B. T.V.

 Line Trans. . . 29/6 Frame Trans Main choke. Width Coil. Boost Choke ... 6/11 All suitable ${ }^{3 / 9}$ Construcrion for Home LASKY'S LINE TRANSFORMER RF. EH'T for line fly back. 6-8Kv, with EY5i heater winding. Suitahle for home construction T/VEVISION TELEVISIONSELENIUM The very latest "Sentercell" S.T.C. range K3/40, 3.2 kV .. $7 / 6$ $\begin{array}{ll}\mathrm{K} 3 / 45,3.6 \mathrm{kV} . . & 8 / 2 \\ \mathrm{~K} 3 / 50,40 \mathrm{kV} & 8 / 8\end{array}$ K 3 . $100,8.0 \mathrm{kV} 14 / 8$ $\mathrm{K} 3 / 160,12.8 \mathrm{kV} \quad 21 / 6$ DARK SCREEN FIL TERS

18 in.	
14 in.	
$\times 14 \mathrm{in}$.	
$\times 12 \mathrm{in}$.	$25 /-$

W/B \& PLESSEY
Line EHT trans.
Frame trans $\quad 32 / 6$
$3 \mathrm{Mc} / \mathrm{s}$ boost choke
Width control.
Scanning coil
Main choke
Main choke
Heater tran
WB 103
WB103A
Froni and rear
C.R.T. supports sup- $21 / 6$
C.R.T. MASKS.

Brand New.
LATEST ASPECT
9 in.
10 in .
12 in .
12in. $7 / 6$
12in. Flat Face 15
12 in . Old ratio $9 / 6$ 12 in . Plastic,

With tk. sc.
finish escut-
cheon
5 in . do do. $21 /$ $\begin{array}{ll}15 i n . ~ R o . ~ d o . ~ & 21 /- \\ 14 \mathrm{in} \text { Recl'glr. } & 21 /-\end{array}$ 15in. Cream rubber
16 in . Eng Elect 17/6 6in. Double D $31 / 6$ 16in. Double D 31/6 7in. Rect glr. NTEW
SPPECT RATIO
ASPECT RATIO 9 in . sorbo 12 in
12 in . with fitted armour plate glass, cream. 11/6 12 in . do. Black $8 / 6$ TEST PRODS. ractable points $4 / 11$ ner pair (1 red, 1 black).

METAL RECTI-
WX3 and 6. Ea. 3/9 14D36 12/4 $14 \mathrm{~A} 86 \ldots \ldots . . \begin{array}{r}20 / 4 \\ 144100\end{array}$
 $\begin{array}{lll}\text { 36EHT45 } & \ldots . & 23 / 8 \\ 36 \text { EHT } 50 & \ldots . & 26 / 1\end{array}$ 36EHT100 .. 29/6

PLESSEY

Scan coils
Width Per pair $25 /-$
NOW AVAILABLE. LARGE SCREEN, WIDE ANGLE CONVERSION DETAILS FOR THE VIEWMASTER. Send 3d. stamp for full data. Fully itemised price list of all Viewmaster components now available.

ALL T.C.C. CONDENSERS exactly as specified for use in The Vicwmaster can now be supplied from stock.

ARMOUR

PLATE GLASS
15in. Actual size
$18 \operatorname{tin} . \times 19$ in.
18 tin.
$\times \operatorname{tin}$.
12 in . Actual size $13 \mathrm{in} . \times 10 \frac{1}{2} \mathrm{in} . \times$ tin.
9 in. Acrual size
9in. $\times 8$ in. \times tin.

LIMITED QUANTITY (Frustrated Export). 5 WAVEBAND CHASSIS.
 trated CHASSIS. Circuit has RF stage, Magic Eye Tuning Indiator, and many other features. For use on A.C. mains 100-250 volts. Waveband coverage 1.5 metres to 550 metres. $\operatorname{In} 5$ ban
LASKY'S f10-19-6

LASKY'S 810-19-6

Complete with valves, less dial. Carriage and packing 15/- extra WILI MAKE A SUPER RADIO-GRAM.

INTERCOM UNITS

 4 -station operation. For use on A.C./D.C. mains 200-250 volts. Supplied complete, with 3 new valves, ready for immediate installation. Fi plastic cabinet. Suitable for use as baby alarm. MASTER UNIT $₹ 7 / 15 /-$. Carr. 5/- extra. Extension Units. Price 21/each complete. Carriage 2/ each extria.DINGHY AERIALS WITH REFLECTORS Umbrella ype, with wire mesh reflector complete with setting up instructions. Mast not supplied. LASKY
PRICE TANNOY PRESSURE TANNOY PRESSURE UNITS 10 watts. 7.5 -ohms imped ance. Last Few only Price Reduced to Carriage $4 / 6$ extra.

The television set you can build at home from standard parts.
A MODEL FOR EACH FREQUENCY State station required.
Brilliant high definition black and white picture Superb, reproduction.
Uses 9in. or 12 in . Cathode Ray Tube. Table or Console Model.
Incorporates all the lates developments.
Television for the home constructor at its finest
Send to-day for the CONSTRUCTION ENVELORE, 32 -page booklet crammed with top-rate information and all top-rate information and fullsize working drawings and size working drawings and
stage by stage wiring instructions.
Alexandra Palace, Sutton Coldfield, Holme Moss, Kirk o'Shotts, Wenvoe, Pontop Pike, Belfast. State model required.

Co-Axial Cable. $70-80$ ohms
impedance.
Single core, 9/- doz. yards. Twin core, $12 /$ - doz. yards. Twin feeder, 6/- doz. yards. Co-Axial Connectors. For standard \downarrow in. cable, $1 / 11$.
12 VOLT VIBRATOR UNITS Oulput 230 volts 80 mA . BRAND NEW AND UNUSED. Size: $9 \times 5 \times 5$ in. Supplied less vibrator. Vibrator required $\begin{array}{ll}\text { is } 6 \text { pin synchronous. } & 196\end{array}$
LASKY Carr. 3/6 extra
Other types in stock from 15/-. T.C.C. VISCONOL HIGH VOLTAGE CONDENSERS
(Cathodray).
10/-
.001 mtd .15 kV .
18/-
.0005 mfd .25 kV
18/-
0005 mft .12 .5 kV
10/-
Plastic case, single bolt fixing Other high voltage condensers 1 mfd 7 kV age condenser
0.04 mfd .12 .5 kV
15.

001 mfd .12 .5 kV

IRADII

ow Hoad) Lid.,
 Hospital)
485/487 Harrow Road, Paddington, London. W. 10 1979 and 7214. All Departments.

TERMS: Pro Forma, Cash with order, or C.OD. on post items only. Postage and package on orders value 11 - $1 /$-extra, f.5-2/- extra. $10-3 / 6$ extra.
goods fully insured in cransit.

DE LUXE TELEVISION CABINETS

For 12 in . carhode ray tubes Beautiful figured medium walnut finish, with high polish Fitted with shelf for receiver glass speaker baffle and fret ans cascors for easy movement. Undrilled. Suitable for use with th Viewmaster. "Practical Tele vision," "Practical Wireless. and "Wireless World" televisors

```
LASKY'S
PRICE
£8.10.0
Carriage 12/6 extra.
```

Outside dimensions of cabine $17 \frac{1}{2}$ in. $\times 16 \frac{1}{2}$ in. $\times 32$ in. Why not convert your table receive: to a console? Adaptor frames for fubes available if requircd.

This cabinet can also be supplied cut out for a 16 in . C.R. tube

而 Sterins

 A MIDGET 4-STATION "PRE-SET" RECEIVER A complete Kit to build a
4-station "Pre-set" Superbet Receiver for A.C. mains The set is
The set is designed to receive any three stations on medium wave, each station being recejved by the turn of a rotary switch-no tuning being neceswary. It is of size, being 8 ith. $\times 4 \mathrm{in} . \times 7 \mathrm{in}$. bigh, and has the performance of a far more for halt the price This Receiver, as tllustrated, can be instructious, including component layout and compotient price list, are avallable for $1 / 9$ A MAINS OR BATTERY PORTABLE KIT

A Midget 4 -valve Superhet Portahle bet covering medium and long waveDesigneä $20 \mathrm{~m} / 240$ volts, or by an " Alldry :C, mains The set is so designed that the mains section is supplied as a separate unit which may be audded at any time. The kit therefore be supplied (a) as an " Alddry " Battery be accommodated in the attache then as illustrated (size 9 in. $x 4 \frac{1}{2}$ in. x 7 in .), this is attractively fluished in lizard. maronn, dark green or blue rexine, or (b) as a combined
Mains/Battery sumerbet Port Mains/Battery superbet Portable Receiver, for which a polished
wood cabinet is available accommodate both Mains Unit and Batteries together. Circuit incorporates dela Kit pre-selective complete in every Fecdback neludes ready-wound frame aerials and aligned 1.F. transis. and drilled chassis fully Overall size of assenbled chassis 8 in. x chassis, etc. This receiver, as illustrated, can be completely built for approx. $£ 10$ (ply 2 in. Unit if required). Send $1 / 9$ for the fully descriptive Assembly Book which Mains Practical Layouts and complete price list of Components. Attache case avala eparately, 37/6.

TWO BATTERY PORTABLES (a) THE "MINI TWO-THREE"

An "Alldry" Battery Portable of midget size, 6 it 4 jin. $\times 3$ inn., designed to cover snedium warebaud $190-559$ The simple design of this trailer aerial.
The simple desizn of this Receiver is so arranged that either a 3 -valve set or a 2 -valve (afterwards easily converted to Consists of a T.R.F. circuist using a regenerative deteetor with H.F. stage and a high gain output pentode. Valse line up $1 T 4$-IT4-DLity.
Toe 2 -valve ret can be completely built for $£ 4 / 3 / 6$ (less
case), and the 3 -valve for f5l3 case), and the 3 -valve for $95 / 3$ In (less case). Euch price
includes valves, speaker and drilled chasis. includes valves, speaker and drilled chassis.
send $1 / 9$ for the assembly instructions.
send $1 / 9$ for the assembly instructions: they include
simple and complete practical component layouts and dia simple and complete practical component layouts and dia-
grams. which enable the most inexperipnced constrac-

${ }_{\text {set. }}^{\text {t. }}$ avalable A Au components are
vailable for separate sale,
a price list being supplied
with assembly instructions

(b) THE "MINI-FOUR"

A 4-valve Battery Superhct liccelver designed to receive
4 pre-set stations, three on nuedium waveband and one on 4 pre-set stations, three on nedium waveband and one on
long wave to suit local conditions. Each station is obtained ong wave the set by the turn of a rotary switch. No tuaing is
on necessary
It 1 of midget size, being ouly 4 in. \times olin. $\times 4$ in. when completely built and is very easily assembled from diagrams supplied.
Cost of all components to build this set. in accordance with the degign, including a drilled and cut chassis and panel and new valves, is $29 / 10 /-$ or less valyes for £6/7/6). Attrac-
ture carrying ease finished in blue leatherette, 16/9. Com plete constructional data with a blue prinit, wheh shou's the practical component layout and wiring diagram, tomether with an individual component price list, is available separately, 1/6. Our battery ellminators (illustrated above) available in bit form are snitable for use with this set

THE VIEWMASTER TELEVISOR

We have had very considerable experience in assithting curtoners to build this T/V and can supply a SPECIinstructions showing practical layouts and price lisily available for $7 / 6$ for London, sutton Coldield. Holme Moss, Kirk-0 -shotts und Wenvoe. Complete television price list is contained in our general STOCK LIST at 9 d ., including Haynes, etce., compouents.

THE DENGO ULTRA MIDGET SUPERHET COIL TURRETS WITH A
ROTARY TURRET ACTION

Type CTG consists of a four station

hich any three stations on medium waveband and one on price 39 can be received by a turn of the turret switeh.
Type CT10, is a 3 waveband coll pack incorporating a fourth guiteh position for 'Gram. Complete coverage is, long waveband $700-3,000$ metres, medium waveband $190-570$ and shurt wave $15-50$ metres. Price $\$ 2 / 8 /-$
A complete rectiver circuit and all necersary lata is includer with each turet. These can be supplied separately for 6d.

Cosmocord "GP PICK-UPS

Cosmocord "G.P. 20 ," for standari records, \&3/5/9 interchangeaole (G.P.19) head for L.P. records, £2, Doccs lightweight "turnover head't type, for L.P. ahd Goldring, steords, £3/12/6.
Cosmocord "Acos" G.P.30, turnover crystal type Cosmocord "Acos" G.P.30, turnover
For statidard or L.P. Records. $£ 3 / 5 / 9$.

BATTERY CHARGER KITS

All kits incorporate metal rectitiers and are for

 A.C. manns 220-2a0 volts. All kits include an easily RESINTOR and a flve-position SELECTOR SWPPWil to enable the charging rate to be varied. For 6 or 12 volt batteries at max. 1 amp., £1/18/9 (excluding Resistor and Switch, £1/3/6). For 6 or 12 volt batteries at max. $1 /$ amps., £2/4/-(excluding Resistor and $\$_{\text {witch. }}$ £1/8/9) fexcluding Resistor and Switch. £1/8/9).
Por 6 or 1% volt batteries at. max. $/ 1$ innps., £2/14/6 (excludiug Resistor and Switch, £1 19/6)., $82 / 14 / 6$ For f or 10 volt batteries at max. 4 amps., $£ 3 / 2 / 6$
(exeluding Kesistor and switeh, $£ 2 / 7 / 3$).

HOME CONSTRUCTORS

A design of a 5 Valve Superhet Receiver, employing an R.F.Stage for 3 or 12 Volt surply. tiona, CLich the complete set of Assembly Inatruc W゙IRING DIAGHAMS, together with a coinplet component Price List.
THIS IS NOT AN EX GOVT. RECEIVER, IT IS A NEW DESIGN EMILOYING NEW COM-

TELEVISION!! A GENUINE SPECIAL OFFER FOR CALLERS ONLY

A FAMOUS MANUFACTURER'S 19 VALVET/VCHASSIS FULLY ASSEMBLED AND READY FOR USE
For London transmission oniy employing à superhet circuit and incorporating the following valve line up :-

6 Type E.F. 42	Type E.C.H. 42
2 Type E.L.33	Type E.L. 38
2 Type E.B. 41	Type E.Z. 35
1 Type E.F. 41	Type G. 32
I Type E.C.C. 91	2 Type E.Y. 51

WE HAVE A FEW ONLY AT THE VERY SPECIAL PRICE OF $£ 19 / 19 /-$ including all Valves, or $£ 33$, including a NE N MULLARD TYPE M.W.31/14c 12in. Tube. (Loudspeaker

[^19]TWO COMPLETELY ASSEMBLED "ALL-WAVE" SUPERHET CHASSIS

(a) MODEL B.3.

(b) MODEL B, A bi-walve is-waveband (4 handsprad) Huperhet Recpiver. volts, and em-
Both Receivers are for opration ot A. ploy the very litest miniature valves. They are designed to the most nodern specification. great attentinn having been given to the quality nf reprouluction which gives excelent.
clarity of speech ams nulusic on hoth kram and radio, nuaking thein the itleal replacement

A GENUINE SPECIAL OFFER!
 PLESSEY 3-SPEED AUTO CHANGE UNITS

Brand New in maker's Cartons, complete with mounting instructions.
£11-3-6 (Normal price is $\mathbf{\varepsilon 2 3 / 1 0 \% \text { -1 }}$ MODERNISE YOUR OLD RADIOGRAM FOR
 $£ 25$
(plus 10/- carriage and insurance) with the very latest equipment. We will supply the 3 waveband chassis on the left with the Plessey auto $£ 25$ ($£ 28 / 7 / 6$ with the 6 waveband chassis). This is less than half the price of
three soeed auto radiograms.

- These units will auto change on all three speeds, 7 in ., 10 in . and 12 in

 - They play MIXED 10 in , and 12 in . records.They have separate sapphires for L.P. and 78 r.p.m. which are moved into position by a simple switch.
Minimum baseboard size required 16 in . $\times 12$ in. with height above $5 \frac{1}{4} \mathrm{in}$, and height below baseboard $2 \frac{1}{2} \mathrm{in}$.
A bulk purchase enables us to offer these BRAND NEW UNITS at this exceptional price. Please add $7 / 6$ packing, carriage and insurance.
 and radic).

!! AMPLIFIERS !!

A Complete Kit of Parts to build a 3-4 WATT HIGH GAIN AMPLIFIER

8 c

This amplifice will give 3 watts output for the small input Toltuge of unly 75 millivolts, and is therpore suitahle for use with any type of pick-uf, from the crystal type to the miniature \mathbf{H} / \mathbf{F} Magnetic type. A tone control is incorpurated and the quality produced is excellent. The overall size of chassis is gin. \times vin. $\times 7$ in. and valve line up esterit. incluting drilled chassis and valves, \&4/2/日, plus (iflu. P.M. (which fits ou chassib), 16/-, or 8in. H.M., $18 / 9$.
${ }_{\text {Price }}$ of fully assembled chassis ready for use, $25 / 5 /-$ (plus cost of spraker).
avillable for $1 / 3$.

A 5-VALVE "ALL-WAVE" SUPERHET RECEIVER

This small attractive Receiver, emboulying monlern circuit echuique, ts designed to corer short, Medium and Long avemands, and ineorporates the folowiug outstanding Aatures: simerhet circuit designed for high efficiency on all - A $3 \pm$ in. P.An. sppeaker accurately matched for good - A quaity reproduction

- The latest range of new 0 -volt B.Y.A. miniature valves. - Built-1n frame aerial with provision for external aerial for distant stations.
- A white plastic cabinet of very attractive appearance
overall size 7hin. $\times 5$ sina $\times 5$ in.
- TBUILT FOR APPROX. £10/10/-

Send 2/6 ior the fully descriptive stare by stare assembly and wiring diagrans, with which complete price details

STERN RADIO Ltd. 109 \& 115, FLEET STREET, E.C. 4

Tel.: CENTRAL 5812-3-4

A DUAL CHANNEL PRE-AMPLIFIER and TONE CONTROL UNIT
bRE MPLTPILR and TONE CONTROL UNIT provides a full control of bass and treble

It can be used with any umplifier and with any pick-up, the range of frequeney control provided by the unit affording ample compensetion for all types of plek-up long playing, without recaurse to pick-up correction. The extreme fiexibility of the bass and treble controls is such that the level of bass and treble cas be set to suit any conditions irrespective of the volmme output of th ampllifer.
Response characteristics are given in 10-watt amplifier ${ }_{\text {The }}^{\text {advt }}$ un
asures only 7 in $\times 4$ in. $\times 2 \mathrm{~m}$, inchading selfcontained power supply, and can be accommodated either panel of away from the main amplitier, i.e.. on the front drilled chassis, valves ($0, \mathrm{~N}_{2} 7$ and 655), s3/16/9. Complete assembly data is availabie geparately for $1 /=$. Completely assembled and ready for use, $\mathrm{E} 5 / 5 \%$.

Bargains in Ex-Service Radio and Electronic Equipment

TEST SET SE2 PATTERN NO. W5799. BRAND NEW

Contains; Wavemeter, oscillator and noise generator working on frequency of 180 to 220 mes. Valves are 1/6×5, 1/655. 1/L63, 2/EA50 I/EC52, I/El468. Mains Transformer 80 V ., 180 V ., $230 \mathrm{~V}_{\text {. }}$, $50-2,000 \mathrm{cps} 10-$.500 microamp meter. All sections are separately screened with their own brass boxes, which are silver plated. Complete with leads and attenuator in wooden case. Grey finish. Size $20 \mathrm{in} . \times 10 \mathrm{in} . \times \operatorname{llin}$. Weight $55 \frac{1}{2}$ lbs.
 OSCILLATOR (SIGNAL GEN.) TYPE 35 Generator with Arequency constructed signal Generator with frequency coverage $15-600$ kcs. S.M. Drive. In I 11 switched bands, 200 v . D C ultra S.M. Drive. Input 200 v . D.C. H.T. and 250 v . A.C or $12 v$. D.C. for valve heaters, L.T. Supply. Shorting strips for altering heater circuit beneath valves. Valves type KTW61 and 2/DL63 or equiv. NOT SUPPLJED.
Chassis and panel construction in steel and finished in grey and black. Dim. $28 \mathrm{in}: \times 7 \frac{1}{2} \mathrm{in} . \times 12 \mathrm{in}$. Wgt. 71 libs.
ASK FOR
$\Varangle 6 \quad 196$
CARRIAGE No. X N 787 RECEIVER CHASSIS Range 150-200 mes. Contains :-I Transformer prim. 85 M . henries, 5 ec . 155 M . henries, 5 -Coils in cans, $3 / 957$ acorn valves, 4 acorn valve bases, $9-1.0$ valve bases, I-25pf. miniature tuning condenser with knob and coupling, 4 co-ax. sockets. On metal chassis size $8 \mathrm{in} . \times 13 \mathrm{in} . \times 5 \mathrm{in}$. Weight $8 \frac{1}{3} \mathrm{lbs}$. ASK FOR

21/-
POST
PROJECTOR UNIT NO. 2
BRAND NEW
REF. 10DB/207
with mu/meal

screen $3 \frac{1}{2}$ in. lens and optical mirror.

This is a form of radar gunsight in which an image of an object is placed on the C.R.T. screen, over which is superimposed an image from the gunsight.
Also contains Lamp for Illuminating Gunsight. Size; 12 in. $\times 5$ in. $\times \frac{1}{4}$ in. In transit case. Weight IS lbs.
ASK FOR
No. X/H942
45-
CARRIAGE
PAID

NEW CATALOGUE No. BD

Gives details and illustrations of Ex-
Service and other items. Price $1 / 6$
Credited on Ist purchase of $10 /-$ value or over.

TRADE ENQUIRIES INVITED

Generous Discounts
GOOD BARGAINS

INDICATOR UNIT TYPE 305

BRAND NEW Contains :-VCR524A-VCR525, 7 EF50, 2 VR54 6 EASO, 2 . 01 high voltage condensers, 3 relays 4 make, 4 break, 500 ohm. coil. Numerous condensers, pots., and resistors. Dimensions $12 \mathrm{in} . \times 7 \mathrm{in} . \times 18 \mathrm{i}$ Dimensions $12 \mathrm{in} . \times$ 7in. \times I8in. Weight 30 lbs .ASK FOR	ASK FOR		
No. X/H943	E4	19	CARRIAGE PAID

DRIVER TRANSFORMER for ET- 4336

TRANSMITTER
Ref. No. $110 / \mathrm{K} 117$. Part XT-3202.
Centre tapped primary, Inductance 2.4 henries Two Secondaries, Inductance 14 henries each Ratio whole pri. to one sec. 1-2 approx. Dim. Ht. $4 \frac{1}{2} \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in} . \times 3 \frac{1}{4} \mathrm{in}$. Wgt. $6 \frac{1}{2} \mathrm{lb}$. 4 -hole fixing.

ASK FOR | ASK FOR | $18 / 6$ | each |
| :--- | :--- | :--- |
| No. $X / E 562$ | $8 / 2 O S T$ | | SUPPLY UNIT RECTIFIER

for No. 43 Transmitter

Ex. Cdn. Army in original wood case
Input 110 volts A.C. $50 / 60 \mathrm{c} / \mathrm{s} .1 .7 \mathrm{~K} . V \mathrm{~A}$ Outputs (HT1) $2,100 \mathrm{~V} .375 \mathrm{~mA}$. (HT2) 500 V . 400 mA . plus HT Lines, 450 V . 275 V ., also 383 V regulated and neg. bias 250 V . 150 V ., 80 V . Making 3 complete power supplies all fed via double choke, condenser, input circuits. Valves are 4/866A/866, 5Z3, 6SJ7, 2/6A3, VRI50/30 (Stab.) and IV. (Time Delay).
The complete unit mounted in metal case with lid. Shock mounted. Dim.; 2 ft . 6 in . x lft . 6 in . \times lif. Finish olive drab. Wgt. 420 lb.
ASK FOR
± 25
CARRIAGE No. X/H26.

PAID
Ready Made for T
THE POWER UNIT TYPE 285.
A.C. mains, input 230 V . 50 sps . Outputs E.H.T. 2 kV .5 mA . H.T. 350 V .150 mA . L.T. 6.3 V . 10A. and 6.3 V . 5 A . Fully smoothed and rectified with valves VU120, 5U4G, VR91 (EF50) plus ASK FOR
$\not \subset 4196$
CARRIAGE
PAID

UWVYRSAL ELECTIONILS

London's Largest Selection of High Quality Communications, Audio, VHF and Test Equipment.

Test Equipment
AVO Wide Range signal generator, as NEW, $£ 22 / 10 /$. AYO Model 7. as NEW, El5. AVO 40, £ll. AVO Minors, E6/15/-. TAYLOR 30A Oscilloscope, as NEW, £22. TAYLOR Wobbulator, £io. COSSOR Double Beam Oscilloscopes from £30. WESTON Industrial test set 20,000 OPV, $£ 20$. PHILIPS Audio Osciltator GM2307, £35. SAL
FORD FORD type 106 Signal Generator, as NEW, ©35, FURZEHILL Oscilloscope type 1936, $\mathbf{£ 3 5}$. EVERSHED Wee Meggers 500 v . $\mathbf{£} 12 / 10 /$ - 500 V. Bridge, $£ 35$. MARCONI Valve voltmeters, $£ 33$. General Radio Type 804 signal generator. $30-300 \mathrm{mc} / \mathrm{s}$. Marconi signal generators types 517 . TF144G. TF390G.
Receivers
Receivers
RCA AR88LF-D, RCA AR77E $550 \mathrm{kc} / \mathrm{s}-32 \mathrm{Mc} / \mathrm{s}$, as NEW, $£ 35$. HALLICRAFTERS $\$ \times 43, £ 90$. $\$ \times 28, £ 45$. $S \times 24, £ 35$. $S 20 R, £ 25 . S 38 \mathrm{AC} / \mathrm{DC}$ $110-250$ v., £25. RME 69 excellent condition, $£ 40$. HRO Junior and Senior receivers, complete with coils and power supplies, from $\mathbf{£ 3 0}$. CR 100 receivers $60 \mathrm{kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$, $£ 28$.
Manuals for : RCA AR88D-LF. HRO's. CRIO0, S27. SX28. AR77E. S20R. HQ120. All at $27 / 6$ per copy.
In Stock : Bendix BC221 frequency meters. TS69AP. 300-1,000 Mc/s Wavemeters. TS45 3CM Signal Generator. TSI74, $30-250 \mathrm{Mc} / \mathrm{s}$.
 CV129. 2K22. 725A. Magnetrons, $2 J 26$ etc. Waveguide lengths and many other items of VHF equipment. $\$ 27$ receivers, $30-150 \mathrm{Mc} / \mathrm{s}$ and receivers up to $1,000 \mathrm{Mc} / \mathrm{s}$ and $3,000 \mathrm{Mc} / \mathrm{s}$.

Audio Equipment.
Speakers: Vitavox, Goodmans cte. Soundmirror Tape Recorder, table model as NEW, £45. Baird Cine Soundmaster for use with projector, $£ 40$. Decca corner horn complete, $£ 22$. Tape for Soundmirror, used once, $£ 5$ per reel.
WANTED URGENTIY

WANTED URGENTLY Frequency Meters Bendix BC221. TS 174/U, TS 175, TS 3, TS J3, RCA AR88's. Hallierafters \$27C-CA Spectrum Analyser TSX 4 SE or TS 148 , and Klystrons $723 / \mathrm{AB}, 2 \mathrm{~K} 39,2 \mathrm{~K} 40,2 \mathrm{~K} 4 \mathrm{I}, 2 \mathrm{~K} 42,2 \mathrm{~K} 43,707 / \mathrm{B}, \mathrm{CV} 129$
3 Shop hours ; 9.30 to 6. Thursday to 1 p.m.
OUR ONLY ADDRESS DEPT Way), MEAdway 3145 (Night).
27 LITSLE STREET

G2AK This Month's Bargains

SPECIAL VALVE OFFER. 866A Rectifiers, $15 /-$ cach. 807 's $12 / 6$ each, or $22 / 6 \mathrm{pr}$. $931 \mathrm{~A}, 45 /$ -
METERS. $2 \frac{1}{2} \mathrm{in}$. Flush mounting M.C. $100 \mathrm{~m} / \mathrm{a} ., 12 / 6$ each; 2 in , Flush M.C. $5 \mathrm{~m} / \mathrm{a}, 7 / 6 ; 4$ amp. thermo., $5 /-: 2 \frac{\mathrm{a}}{\mathrm{z}} \mathrm{in}$. thermo. 0.2 a , 7/6; 2in. Flush 20.0-20'amps. M.C. 5/-; $0-20$ volts $7 / 6 ; 2 \frac{1}{2} \mathrm{in}$. Flush
 TWEST RIBBON FEEDER. Heavy dew only, $27 / 6$ each.
TWIN RIBBON FEEDER. Heavy duty 300 ohm, 5d. per yd 50 ohm, 8d. per yd. 7 fr . length 9 d . per yd. Co-axial cable, $\frac{1}{2}$ in. dia. 50 ohm, 8d. per yd. 7ft. length $\frac{1}{4}$ in. dia. Co-axial with Pye piug one end, I/6, post free. All other Co-axial and feeder, plus $1 / 6$ post any length.
POTENTIOMETERS. Carbon Type Potentiometers, $25 \mathrm{k}, 50 \mathrm{k}$., l00k., $\frac{1}{4}$ meg., 2 meg., l/6. Many W.W. slot types available for T.V. replacements.

SPECIAL OFFER. 300 ohm. Flat Twin 150 w . rating, 6 d . per yd. (minimum 20 yds.) post free. DEAF AID CRYSTAL MICRO. PHONE UNITS. 12/6 ea.
STANDARD inin. T.V. CO-AXIAL CABLE, Ild. yd. or $9 / 6$ per doz. yds. or 9d. yd. in 100 yd. coils. P. and p. $1 / 6$, any quantity.
STREAMLINED BUG KEYS by famous manufacturer. Listed
at over E4. Our Price 45/= only.
SHROUDED M.C. MIKE TRANSFORMERS. M.C. mike or line to grid, 5/- each. P. and P. I/-
M.C. Mike Trans. 2/-, plus p. and p. $6 d$.

CARBON MIKE TRANS., $2 /-$ each. P. and p. 6d.
COMPLETE SET OF AR88 TUBES (14) for LF or D model receivers, 65/10/-
AR88 MATCHING SPEAKERS by R.C.A., fitted rubber feet and 6ft. lead, 65/-. Panel escutcheons $22 / 6$ each.
TAPE RECORDING EQUIPMENT. Desks by Bradmatic, Tamsa, Lane and Qualtape. Ex stock. Heads, Oscillator Coils, Tape and Reels always available
GERMANIUM DIODES. B.T.H. 2/-, G.E.C. $2 / 6$.
Carriage paid on all orders over $E /$ except where stated. Please nclude small amount for orders under $E I$.
CHAS H YOUNG G2AK
All callers to 110 DALE END, BIRMINGHAM
'Phone: CENTRAL 1635.
Mail orders to 102 HOLLOWAY HEAD, BIRMINGHAM Phone: MIDLAND 3254.

MAINS TRANSFORMERS
Primary, 200-250 ₹. P. \& P. 2/-
300-0-300 250 miA. 6 v. 5 a., 5 v. 3 \&
nelamped, $27 / 6$
$400-0-400 \quad 250 \mathrm{~mA},, 4$
4 times. Unclampen, $32 / 6$.
$300-0-300,100 \mathrm{~mA} ., 6$ volt 3 amp . 5 volt 2 imp., $22 / 6$
5 volt 2 imp., $22 / 6$.
Drop thro' $350 \cdot 0-350$ v 70 m
ar. 5 amp., 5 . L amp. $14 / 6$
Drop thro' $2: 50-0-250$ v. $80 \mathrm{~mA}, 6$ v. Drop thro 2 arompe, $14 / 6$.
Drop thro' $110-110$ tit mA., 6 v. 0.5 amp. $8 / 6$.
280-0-280, drop-through, 80 mA.
6 v. 3 amp., 5 v. 2 annp., $14 / 6$.
Auto-wound, H.T. 280-volts at 360 mA . \ddagger v. 3 amp., 2 v. 3 amp., or 6 v. 3 amp Geparate $4 \nabla .3$ amp, $10 / 6$.
Auto-tranalormer, 110 จ. 70 watta, 1016.
$250-0-250,80 \mathrm{~mA} .6$ จ. 4 qmp., 14/Pri. v . 1 amp. $8 / 6$
Pri. 1 amp., $8 / 6$.
Pri. 200/250
V., secondary 3, $3,5,6$ Pri. $200 / 250 \quad V$, secondary $3,4,6,6$,
$8,9,10,12,15,18,20,24$ and 30 volt Semi-shrouded drop-thro' 200/250 ${ }^{\text {at }}$ primary; sec. $280-0-380,200 \mathrm{~mA}$. 6 v. 5 amps., 5 จ. 3 aunps., $27 / 6$ Semi-shrouded drop thro ${ }^{3}, 270-0-270$ $80 \mathrm{~mA} ., 6$ v. 3 alle, 4 v. $13 / 6$. Semi-shrouded drop thro'/6 Heater Transformer. Pri. 240-250 v $6 \mathrm{v}, 1 \frac{1}{2}$ amp., $6 /-; 2$ v. $2 \frac{1}{2}$ ampis. $5 /-$ 2, 4 or 6 v. at 2 ampre. $7.6 ; 2$ v. $2 \frac{1}{2}$ amp. and 6 V. 0.6 amp.
816.4 P. P. each $1 j$.
$800-0-800250 \mathrm{~mA} ., 4$ v. $2 \mathrm{amp}, 27 / 6$ P. \& P.
P.M. SPEAKERS (closed field) with $_{\text {(ess }}$

with less

6, in.
8in.
I.
$\begin{array}{ll}16 / 6 & 13 / 6 \\ 16 / 6 & 12 / 6\end{array}$
$\begin{array}{ll}16 / 6 & 12 / 6 \\ 18 / 6 & 15 /-\end{array}$
10 in . less trans., $21 /-\mathrm{P}$. \& P. $1 / 6$. R. \& A. 8in. M. P'. Sineaker field coil,
 trans., 17/6. P. \& ' ${ }^{\prime}$.
Extension speaker cabinet, in ecintrast-
 Will taike ${ }^{63}$ or 8in. speaker. 176 .
P. $\&$ P. $2 /-$. P. \& P. $2 /-$ -
Volume Conitrols, Long spindle less Hwitch, 50h, $500 \mathrm{k}, 1$ meg., $2 / 6$ each
Expanded aluminium speaker Iret, $13 \frac{1}{2} \times 9 \mathrm{in}$. $2 /-$.
Volume Controls. lang spindle and
 apiucile double liole switch, miniature 5/-. P. \& 1. 3d. each.
Trimmers, $5-40$ pf., 5 d . $10-110,10-250$. $10 \cdot 450 \mathrm{pfi}$, 10 d .
Twin-Gang . 0005 Tuning Condenser, $5 /-$ With trimmers, 7/6. P. \& I', 1/ Line Cord. 3.way 0.3 alut. 180 ohnts, per yard. 1/3 per gard.
Twin-gang, 0005 with feet, size $3\} \times 3 \times 1$ inn.. 676.
$\begin{aligned} & 3-\text { gang } .0005, ~ w i t h ~ f e e t, ~ s i z c ~ \\ & 7 / 6\end{aligned} \$ \times 3 \times 1 \geqslant 10$. $7 / 6$.
$7 / 2$
Television Coils round in alican, size
2 ald \times former with former ant iron core, 1/-each. Hoover Variable Speed 600-1.200 revs. Tape Recordiag motor. Shent with fluxing. weight 5 lb.. $27 / 6$. With fixing, ${ }^{\text {F }}$, 2/6.
PERSONAL SHOPPERS ONLY. Sin. Penarger 17/6. R2irn $2^{2 / 6} / 6$.
Germanium Crystal Diode, $2 / 3$ post Germa
Television Masks. White Rubber gin. with glass. 7/6. Cream Hubber, 12in. With armour-plate gliass, $15 /-$, 15in T.V. Width Control, $3 / 6$.

AMPLIFIER CHASSIS, 18 gange AMPLIFIER Mated rteel with transformer at $5 \mathrm{v} /$ hohler cut-outs. $12 \frac{1}{6} x$ $8 \times$ inin $3 / \cdots l^{1}$ P. 1/6.
USED G.R.T. TUBES. Heater cathode stioris 12 in . $75 /-$; 9in. 45/.. Ion burn, 12in. 55/-; 0in. 45/-. Pon bura, pran. $35 /$ post packing $7 / 6 \mathrm{cach}$. CRYSTAL PICK-UP by famous manufactorer complete with sapphlre 23/-. Post and packing on each $1 /$. EX-GOVT. RECEIVER TYPE B28. Corayllete coil rinit. 6 handis, $60 \mathrm{kc} / \mathrm{s}$.
 Phis 2/- P. \& I. Circuit for above
4/-. Variable selectivity IF Swition to suit
above, $/ 6$. MODERNISE YOUR OLD CABINET ESCUTCHEON Size $15 \times 8 \mathrm{~S}_{\mathrm{i}}$. Complete with 3 wave-band scale size $5 \frac{1}{4} 4 \mathrm{in}$. 5/-. P. \& P. $1 / 6$.

D. COEEN
 RADIO \& TELEVISION COMPONENTS

Terms of Business: Cash with order. Despatch of goods within 3 days from receipt of order. Where post and packing charge is not stated please add $1 /$ up to $10 /=, 1 / 6$ up to $E 1$, and $2 /-$ up to $E 2$. All enquiries and lists, S.A.E. SPECIAL NOTE: NO GOODS SENT WHERE CUSTOMS

DECLARATION IS APPLICABLE.

23 HIGH STREET (Uxbridge Road) FCTON, W. 3 Telephone: ACOrn 5901
 Saturday 9-6 p.m. Wednesday 9 -1 p.m. Other days $9-4.30$ p.m.

PERSONAL PORTABLE CABINET. In crearn4 chassis. Scale and 3 knobs. Takes miniature 90 v. anid
Tit v. batteries, $9 /$-, post Reind pkg. 1/6.

24in. P.M. Speaker to $6 t$ put tras. Mmature out pure waveclan, 5/-, Mini1/6. Miniature l. used as Volume ind Oft 1/6. 4 B7ts value holderi fin, dia, sin. long and TRF coils $\frac{1}{2}$. long \times ain. wite ; complete with 4 value all-dry mains and lattery circuit, $8 / 6$. - lenner kit, comprising ${ }_{\text {miniature condensers. } 3 / 6}$ Resistor Kit, comprisiug
miniature resistors, The ahove recejver (lies valves and batteries) could he built for approximately 51/-. All valves to sult above available. Point

 in walnut or cream, complete sith 7. \&. F.
chassig. 2 waveband scale, station mimes, chassis. $\begin{aligned} & \text { new waveband, back-plate, drum, pointer, }\end{aligned}$ new wavebiuk, back-plate, drim, ping hrive spindle, 3 knobs and back, $22 / 6 \mathrm{P}^{2}$. \& $\mathrm{T}^{1} 3 / 1 \mathrm{~h}$.
AS ABOVE but complete with 5 in. speaker and O.P. trans. (these speaker have heen, used but tested $0 . \mathrm{K}^{\text {. }}$) , $30 / \mathrm{F}$ 1'. \& P. 3/6. Metal rectiller m/6. (anag with trimmers, \%/6. Merlium and long T.R.F. coils $5 / 6$. 3 obsolete ex-Govt.
yalves. 3 wholders, and circuit of an alve. mains 3-valle plus rec. T. T.F. Heater trans. $6 /-$. Volume control with switch 3/6. Wave-change switch $2 /-32+32 \mathrm{mfd} .4 / 6$. Bias condenser $1 /-$. Resistor
KIT OF PARTS FOR SIGNAL GENERATOR, Coverage $110 \mathrm{Kc} / \mathrm{g} .-320 \mathrm{Kc} / \mathbf{2} .320 \mathrm{Kc} / \mathrm{s}-\mathrm{-} .90 \mathrm{Kc} / \mathrm{g}$
 size of scale 6 itin. $\times 3$ in., 2 valves and irectiner valve. Abration accuracy phus or minis it per tion 400 c.p.s. to a depth 30 per cent. Frequency cent. Mormatedis includes the return to us for checking and walibration. The wilf intild same for 15 - extrit. Gircuit and point-to-point wiring dagram, 3/6. Kit of parts for above, less checking and calibration. £3, whe 2/6 1'. \& l^{2}.
CONSTRUCTOR'S PARCEL,
comprising chassis $124 \times 8 \times 2 \mathrm{Ln}$, and thans. cut-outs, backplate, 2 supporting brackets, 3 waveband sctule, new wavelength station names. Size of scale $11 \% \times 49$ in., drive gpindle, drum, '3 pulleys, pointer, 2 bub cetal valye holdere, 4 knobs, P^{\prime} and pair of 465 IF's, $16 / 6$. A. A AB. 1/9.

AS ABOVE, but complete with $15+16$ mifl. 350 wkg. and
 $0-250 \quad 60 \mathrm{~m} / \mathrm{a} . \mathrm{A}^{6} \mathrm{v} .3 \mathrm{Amp}$

MAINS OR BATTERY SUPERHET PORTABLE COILS. Medium-waved frame arrial and MAINS OR BATTERY SUPERHET PORTABLE COILS. M-core acreened L/M osc. coils, with circuit IP. $465 \mathrm{Kc}, \mathrm{\theta}$ 日/6.
 turer. l're-aligned adjustable iron-dust cores, per pair, 12/6. Both these itenus $\mathbf{£ 1}$, post paid CONSTRUCTOR'S PARCEL comprising chassis $8 \mathrm{in} . \times 4 \mathrm{din} \times 1 \frac{1}{2} \mathrm{ith}$, with epeaker and valpo holder cut-outs, 5in. P.M. speaker with transformer, twin gang with trimmers, pair c.a.f coils long and medium, iron-cored, four valveholders, 20 K . volume control and wave-change
switch, $23 /-\mathbb{B}^{3}$. d P. $1 / 6$. switch, 23/-. 13. de P. 1/6.
CONSTRUCTORS 3-VALVE T.R.F. PARCEL. Comprising chassio, L. and M. coila, gang, pot.

In pollshed walnut originally made for gram. motor. Would make ideal 28 in high by $17 \frac{1}{2}$ wide by 13 jin . decp. 9/6 plus $7 / 6 \mathrm{P}$. \& P
Valve Holders, moulded octal Mazda, nad loctal, 7 d . each. Paxolin, octal. 37G, B8A and D9A, 7d. each. B7i moulifed with screening can, $1 / 6$ each. 16×24350 wkg.
$6 \times 24350 \mathrm{wkg}$.
$4 \mathrm{mili},$.
200 wkg
$41 \mathrm{mfd},{ }^{2} 450 \mathrm{wkg}$
16×8 nid... 500 wkg
16×8 nid. 590 wkg .
ti $\times 16 \mathrm{mid} ., 500 \mathrm{wk}$
$\times 1 \mathrm{fi}$ mitl. $4 \stackrel{\rightharpoonup}{5} 0 \mathrm{wkg}$ $32 \times 3: \mathrm{mfd}, 350 \mathrm{wkg}$.
$32 \times 3 \pm \mathrm{mtd} ., 350 \mathrm{kkg}$ and 2 mif., 25 wkg.
25 mfd .25 kkg.
250 mid .12 vg .17 kg.
1611 id., 500 wkg ., wire ends 8 mid., 500 v . Whg., wire ends
 $1(1)$ mfil. 3.50 wkg .
Ex-Govt. 8 mfit.. 500 F. Wkg., size $34 \times 11,2$ for. $60+100 \mathrm{mid} .280 \mathrm{v}$. Wkg $16 \times 3211141 ., 350 \mathrm{wkg}$ 50 mfl ., 180 wkg . $85 \mathrm{mfin}, 220 \mathrm{wkg}^{6} \mathrm{~m}$. 50 mfd. 1 w wg. . 7 . 50 mifl.. 50 wkg. and mothed
Mininture wire enils mothled 7d. Combined 12in, mask and escutcheon in lightly tinted perspex. New aspect edged in brow7l. Fits on front
cabinet, $1 \sim / 6$. \mathbf{I}. \& $\mathrm{I} .2 / \mathrm{2}$. Frame Oscillator Blocking Transiormer, $4 / 6$.
Frame O.P. Transformer, Inductance 10 hy , ritio $10: 1,9 / 6$
Tube Mounting Bracket, size $0 \frac{1}{2} \times 4 \frac{2}{2}$., 12in. Tute clannps, $2 /$ Smoothing Choke, "2 henry 150 mA , 36 . 2.0 mad. 4 hetury. 5/- ; 250 mA $10 / 6$; ${ }_{2} 50 \mathrm{~mA}$. 8 hemry, $8 / 6$.
P.M. Focus Unit for auy 8 or 12 in . tube except Mazala Jin., with Veruier adjustment, $15 /-$ P. \& P. 1/6. P.M. Focus Unit for Mazda 12 in , with Vernier anlinagtument $17 / 6$. P. \& P. 1/6. Wide Angle P.M. Focus Units. state tube 25/-. P. \& P. 2/-
Enerxised focus coil. high resistance with mounting bracket. $1 / 6$ plus

Scan Coils. low line low imperfance frimue, complete with 0.1^{2}. transfornere
lon Traps for Mullard or English Electric tubes, $5 / \mathrm{h}$, post pall. 465 Kc. I.F.s, size $2 L_{2}<1$ Iin. Q. 110
 cored 1 Fs. $4 \times 1 \frac{1}{2} \times 1 \frac{1}{2}$ in., per pr. \%/6. Wearite stamlard iron-cored 965. Kc. IF"s, $34 \times 3 \frac{1}{8} \times 1$ inin, per pr.

Iron-Cored 465 Kc . Whistle Filter. $2 / 6$.
OUTPUT TRANSFORMERS. Standaril type 5,000 ohms imp. 2 ohms speech with extrat feed-loack winlings, $4 / 3$ Miniature $42-1$ 2-ohm speech coil. $3 / 3$
Multi-ratio $3,500.7,000$ and 14,000 2 -uhn! speech coil. 5/6. 10-watt push PUSH-BACK CONNECTING WIRE. 1)oz. Yids. 1/6, post wald

 3 -pole
3.6 -way, siniature type. long spindle,
3 -nole 4 -way, 2-pole 5 -way, 4 -pole 3 -way and 4 -pole 2 -way, $2 / 6$ each. P. \& P. Jd.

For Quality Bargains Always - Hest Buy a Ho ritain's

POWER UNIT 247. Enclosed in grey steel case size $11 \times 9 \frac{1}{2} \times 7 \frac{1}{2}$ in., with chrome handles. For 230 volts 50 cycies mains operation. Output 600 volts at 200 mA , fully smoothed by 1.000 volt working paper condensers and extra heavy duty choke. Also 6.3 v .3 amps . A complete power unit including $5 \cup 4 G$ rectifier and indicator light for only $52 / 6$, plus $7 / 6$ carriage. New and in transit case. A REAL SNIP.

HALLICRAFTERS SKY CHAMPION S20R. Price $\mathbf{E 2 1}$, plus 10 -carr. HALLICRAFTERS SKY RIDER DEFIANT. Price $\mathbf{1 0} \mathbf{2 7} \mathbf{1 0}$ =, plus COMMUNICATION RECEIVER RIIS5 for world
COMMUNICATION RECEIVER RIIS5 for world wide reception. Can be heard at any time during shop hours. Air tested prior to despatch. Brand new at $£ 11$ 19/6. A few soiled at $\in 7 / 19 / 6$. Also have a number of RIIS5N's at $£ 17 / 19 / 6$. Carriage in original transit case $10 / 6$ extra on all models. Send 13 for circuit details, etc.
A.C. MAINS POWER PACK/OUTPUT STAGE enables the RIISS to be used to operate speaker from 200250 volts A.C. without any modification whatever. Guaranteed 6 month. Price 5410 - plus $3 / 6$ oostage. SAVE MONEY BY PURCH ISING THE NEW RIIS5 AND PJWER PACK TOGETHER. ONLY 115196 . PLUS 126 CARRIAGE.
U.H.F. RECEIVER ADMIRALTY YYE is 48 . This is a U.H.F. set of advanced design covering 100.150 Mc s and suitable for commercial use by airline companies, etc. It is similar in appearance to the R1/32 and is runing meter, etc Complet rack meunting. Provision for crysta! control, tuning meter, etc. Complete with all 13 valves. Price $\mathbf{E} 12$ plus 10 -carriage. operation from $200 / 250$ volts 50 cycles A Cack mounted power packs for operation from $200 / 250$ volts 50 cycles A.C. mains. Paper smoothing, two heavy duty chokes, VU39 rectifier. Output 250 volts D.C. $100 \mathrm{mA}$. . 6.3 volts 4 Amps. Two types, Mark I with H.T. current meter at $\approx 4 / 4$ Mark II with H.T. current and volt meters at \&4 12/-. Carriage 5 . Suitable for use with P48, RII32, RII8I, RII55, et Lead for any speciried set with Jones plugs 10 - extra. All power packs guaranteed in working order. "INEXPENSIVE TELEVISION", This book describes the building of a T.V. set from ex-Government surplus equipment. Price 2.9, post paid. R1355 RECEIf゙E践. The justly famous receiver unit specified for the "Inexpensive T.V." Valve line-up 8-SP61, I-VR92. I-VUl20 and a 504 Slightly used, but in very good condition. BARGAIN PRICE 296 plus 5 carriage and packing
BARGAIN OFFER. The RI 355 complete with RF24 unit tuned to whichever station is required (sound or vision) for only 626 plus 76 carriage. RF2S and RF27 uses 2-EF54 and E352. RF2S covers $50.65 \mathrm{Mc} / \mathrm{s}$ and RF27 NDICATOR UNIT TYPE ©5
but is 50 cycle version. Double decker chassis with VCR97 Unit 62 but is 50 cycle version. Double decker chassis with VCR97 mu-meral Screen, 16 SP6I's, 2-EB34's, 4 EA50's, loads of components, etc., in BRAND INDICATOR UNIT IB2A EOER $58 / 6$ plus $7 / 6$ carriage.
INDICATOR UNIT 182A contains VCRSI7, 3-EF50. I-5U4G and 4-SP6I, BRAND NEW (less relay). Price $79 / 5$ plus 76 carriage.
45 MC/S PYE STRIP. Vision unit for London frequency, complete with 6.EF50 and EA50. Circuit provided. Price $\mathbb{E} / 10$-plus $2 / 6$ carr.
T.V. PRE-AMP uses 2.EF50's and tunes to $45 \mathrm{Mc} / \mathrm{s}$. Easily altered to other frequency. With valves $19 / 6$, less valves $10 / \%$. Post $1 /-$ extra.
E.H.T. TRANSFORMER for the VCR97, ctc. Mains input. Output 2,500 volts, 4 volts 2 Amp., $2 \cdot 0-2$ volts 2 Amp . Fully guaranteed at 35 6in. MAGNIFYING LENSf or the VCR97, etc. First grade, oiled filled. Now only 176 plus 26 post
STANDARD TRANSEORMERS of current manufacture. Two types, both standard tapped primaries. Universal mounting. (1) 3500.350 volts $80 \mathrm{~mA} ., 0.4-5$ voit $2 \mathrm{Amp} .0 .4-6.3 \mathrm{v} .4 \mathrm{Amp}$. (2) $2500.250 \mathrm{v}, 80 \mathrm{~mA} ., 0.4-5$ 2 A., 0.4-6.3 y. 4 A. Both these transformers are new and boxed, fully guaranteed. Price 18 - post paid.
HEAVY DUTY CHOKE. 5 Hy .300 mA ., size $3 \times 4 \times 4 \frac{1}{\mathrm{in}}$. high. Totally enclosed, chassis mounting. A beautiful job, brand new and boxed 30 VOLT TRANSFORMER
30 VOLT TRANSFORMER standard primary, secondary 30 volts 2 Amp. tapped at 3 v., 5 v., $6 \mathrm{v}_{\text {., }} 8 \mathrm{v} . .9 \mathrm{v} ., 10 \mathrm{v} ., 12 \mathrm{v} ., 15 \mathrm{v} ., 18 \mathrm{v} ., 20 \mathrm{v} ., 24 \mathrm{v}$. Has countless uses. Price $17 / 6$.
METAL RECTIFIER. 12 volt 2 Amp., full wave bridge type. Suitable for use with above trans. Price 126.
METAL RECTIFIERS. Selenium 230 volts 60 mA . at $5 /-250$ volts 100 mA . at $7 / 6$. RM2 at $4 / 3$ or two for $8 /=$ RM3 at $5 /$. . RM4 at $17 /$ TEST SET 205A. This is a 3 centimetre precision test set. Latest version, brand new condition at $£ 20$.
MARCONIVALVE VOLT METER E25. We have many other types of test equipment in stock. Enquiries invited.
50 MICRO-AMP METER $2 \frac{1}{2}$ in. panel mounting at 65 -
$2 \frac{1}{2} i n$. SQUARE FLANGE D-IMA METERS. Brand new and boxed. ONLY 15
I MA. METER, 2 in. dial in sloping desk type mounting at 25%
3,000 VOLT ELECTROSTATIC METER, $3 \frac{1}{2} \mathrm{in}$. dia. Brand new and boxed for only 35/-
UNIVERSAL AVOMETERS MODEL 40-very little used, thoroughly checked and tested. First class multi-range test meter for ONLY E9/19/6. SPEAKER CABINET rexine covered 5 ply, takes heavy duty 12 in . speaker. Size $19 \mathrm{in} . x 19 \mathrm{in.x} 14 \mathrm{in}$. Brand new at $59 / 6$ plus $4 / 6$ carriage. Can be supplied with Vitavox K $12 / 2012 \mathrm{in}$. extra heavy duty P.M. speaker for only El0 plus $4 / 6$ carr. LIMITED NUMBER AT THIS PRICE.
RECEIVER 68P. A four valve battery superhet set. Uses standard $465 \mathrm{kc} / \mathrm{s}$. If trans. Complete with all valves. Covers I.5 to $3 \mathrm{Mc} / \mathrm{s}$. (100 to 200 metres). Circuit supplied. ONLY $32 / 6$.
SYLVANIA RED EF50's. Brand new at $8 / 6$ each. British types tested at 5/- each.
(HARLES BRITAIN (Radiv) Ltd.
IIUPPER SAINT MARTIN'SLLANE LONDON,W.C. 2 TEM 0545

[^20]
ValUE FOR MONEY OFFERS

AIR MINISTRY COMMU. NICATION RECEIVER Rilis5A. Brand New. Frequency ranges- $18.5-7.5 \mathrm{Mc} / \mathrm{s}$, $7.5-3 \mathrm{Mc} / \mathrm{s}, 1,500-600 \mathrm{kc} / \mathrm{s}, 500-$ $200 \mathrm{kc} / \mathrm{s}, 200.75 \mathrm{kc} / \mathrm{s}$. Complete with 9 valves and Magic Eye. Guaranteed absolutely perfect. Price $\mathbf{6 9 / 1 0 / - \text { , plus } 1 0 / \text { - for packing }}$ and carriage.
1155 POWER PACK AND OUTPUT STAGE complete with U50 and KT61 valves (not surplus) Black crackle case $12 \times 8 \times 5 \mathrm{in}$. built.in 5in. pm Speaker and phone jack. $200-250 \mathrm{v} . \mathrm{A} . \mathrm{C}$. All connections terminate in Jones plug which enables instant operation of receiver without any modifications whatever., Matches in appearance with receiver. Made to components, $\notin 7 / 10 /$ - plus $3 / 6$ carriage . Built entirely from top grade new components, $67 / 10 /$ plus $3 / 6$ carriage.
G.E.C. VHF RECEIVERS complete with 10 valves. Ex-Gove. As used by police. Used but guaranteed in excellent condition. Valves comprise ZA2's, 954's, or EF50's in HF and lst Det. stages. Det 19 in local oscillator, KTW63's in three IF stages. D63 Det and AVC, LF H63, Output KT63, Noise suppressor D63. Power requirements 6 v . 3a, 270 v .80 ma . Frequency range $78.5-82 \mathrm{Mc} / \mathrm{s}$. Intermediate frequency adiustable 8.3-9.8 Mc / s. Oscillator Crystal controlled (No Crystal included). Grey enamel steel case with lid $10 \times 8 \times 7 \mathrm{in}$. Weight 221 bs . Note the amazingly low price, $39 / 6$ plus $5 /$ - carr. LATEST FERRANTI AR!5 HIGH-POWER CAR RADIO. 12 volt Medium and long wave. Complete with control heads and leads. Unfor-
tunately these sets are less the flexible drives. Purchased from the estate tunately these sets are less the flexible drives. Purchased from the estate
of a late dealer. List price $£ 37 / 10 /=$. 4 only. Price $£ 15$ each. Absolutely

H. P. RADIO SERVICES LTD.

55 County's Leading Radio Mail Order House,
Tel.: Aintree 1445

BARGAIN MONTH

I ONLY. 9 LINE OFFICE INTERCOM. UNIT. Complete with Master Unit and 8 press button Telephones, and junction boxes. Perfect working order. 675 carr. paid.
125 VOLT M.C. VOLTMETERS. Ironclad 4in. scale 30/- each, post $2 /$
300 V OLT M.I. V OLTMETERS. Bakelite 3 in . scale $17 / 6$ each, post 1/6.
SLYDLOK FUSES. 5 amp, $2 / 6$ each; $15 \mathrm{amp}, 3 /-$ each ; 30 amp . $3 / 6$ each. Post $6 d$. per half dozen.
60 OHM C.L.R. EARPHONES. 5/- per pair. Post 1/-
A FEW T.R. 96 VALVE BATTERY RECEIVERS still left at $15 /-$, carr. $5 /-$
JONES PLUGS or SOCKETS. 8 way chassis mounting 6 dozen: 8 way with covers $7 / 6$ per dozen; 4 way plugs only chassis mounting $4 / 6$ per dozen. Post $1 /-$ per dozen.
18 MM. SPARK PLUGS. $2 / 6$ each or 4 for $7 / 6$, post $1 /-$
ONE POUND REELS FRY'S $40 / 60$ SOLDER, $6 /-$ per reel,
MUST BE SOLD. 100 FEET AERIALS. Suitable for connecting wire, $3 /-$ per 100 feet. 2 for $5 / 6$, post $1 /$.
15 AMP IRONCLAD D.P. SWITCHFUSES, $7 / 6$ each, post /-* 30 amps. ditto,
24 VOLT AND 12 VOLT 60 AMP CUT OUTS, Type "D" $5 \mathrm{C} / 1616$ and $5 \mathrm{C} / 161510$ /- each, post 1/-
Finally, after youl have finished work clean your hands with "SWARFEGA" gritless hand cleanser, obtainable from us at $1 / 6$ per tin, post $6 d$. Trade supplied at $13 / 6$ per dozen. 4 dozen post free.

UNIVERSAL ENGINEERING Co.

(Dept. W.W.)
HAVELOCK PLACE, HARROW, MIDDX.

Terms C．w．o．or C．O．D．No C．O．D． under \＆1．Postage $1 / 1$ extra under $£ 1$ ． $1 / 9$ extra under $£ 3$.

Please enclose S．A．E． with all enquiries．

rado Supiy co．
 （LEEDS） LTD．

 32 THE CALLS，LEEDS 2Open to Callers：
9 a．m．to 5.30 p．m．
Saturdays until
1 p．m．
FULL PRICE LIST 5d．

TRADE LIST 5d．

COLLARO TAPE DESK MOTORS，sharled pole 1 ype，clockwise or anti－clockwise， $29 / 9$ each．
COAXIAL GABLE． 75 ohms，$\frac{1}{4}$ in．， 10 d ．yard DIAL BULBS，M．E．S．，（0．5 v． 0.15 a．， 8 v． 0.15 a． 6 9 dozen．
SPECIAL OFFERS．Germanium Crystal Diodes 2／9．Midget Mains Transformers（size approx $2 \frac{1}{2} .32 \frac{1}{2}$ ．）．Screened Primary 220240 v． 50 cs Output， $250-0-250 \mathrm{v} .10 \mathrm{~mA} .13 .3 \times 2.5 \mathrm{a}$ ．Only 11／9．Smalt Filanent Tratssomers， input，bi．3 v． 1.5 a．output，5／9．Auto 1 ansion－9 $230-250$ v． 50 watts， $4 / 9$ each．

BATTERY SET CONVERTER KITS．All parts for converting any $19 p e$ of Battery recewer to All
Mains．A．C． $200-250 \mathrm{v} .50 \mathrm{c} / \mathrm{s}$ ．Kit will supply fully smoothed h．t of 120 v ． 10 s ．or 60 v ．at up to 40 mA．，and filly snoothed i．t．of 2 v ，at 119 ． Supplied reatly for use to $7 / 9$ extra．
PERSONAL SET BATTERY SUPERSEDER KIT． Complete with case．Supplies 10 v ． 10 mad ．and
 Receivers．Price with circuit 31／6．Or＇ready for use， 389 ．Size of Unit $5 \frac{1}{2}$ 3年 1 有in．approx．

H．T．ELIMINATOR AND TRICKLE CHARGER KIT．Consists of h．t．and i．t transjormer，h．i and l．t．rectiliers，stnonthing electrovile choke atd sterl cabe with black crackie finish 10 ma Mains infut of $204-250 \mathrm{~V}$ ．Output 120
Or i＂working order， $37 / 6$ ．

BATTERY CHARGER KITS

To charze 6 v．or 12 z ，acc，at $2 \mathrm{a}, \mathbf{3 2} 9$
To charge 1 is or 12 v acc．at 4 i．． $\mathbf{4 9} \mathbf{9}$ ．
Above consists of itansformer，full wave rectifier． fuse，fuseholder，strong steel case with black Supplied in working order， $6 / 9$ extra

SELENIUM RECTIFIERS

$76 ; 112$ v． 2 a．liv．（Bridge）， $109 ; 1 / 12$ v 4 a．F．W．（Bridge）， $18 / 9$ ；（i 12 v．$;$ a．F゙．W．（13riche）

ELECTROLYTICS（Current production．Not

Tubular Types		Can Types	
$8 / \mu \mathrm{F} 450 \mathrm{v}$ ．	1／11	$13 \mu \mathrm{~F} 450 \mathrm{v}$ ．	2／9
$8 \mu \mathrm{~L} 500 \mathrm{v}$	2／9	$24 \mu \mathrm{~F} 350$ 勺．	$2 / 11$
$16 \mu \mathrm{~F} 350 \mathrm{v}$	$2 / 3$	$32 \mu \mathrm{~F} 350 \mathrm{v}$ 。	211
$16 \mu \mathrm{~F} 450 \mathrm{v}$ ．	2／9	32 mfd .450 v ．	$4 / 9$
$16 \mu \mathrm{H} 500 \mathrm{~V}$	3／9	$40 \mu \mathrm{~F} .450 \mathrm{v}$ ．	$4 / 9$
$\because \mid \mu \mathrm{F}$ ： 350 v ，	3／3	$50 \mu \mathrm{~J} 350 \mathrm{v}$	$4 / 9$
$32 \mu \mathrm{~F} 350 \mathrm{v}$	3／9	$88 \mu \mathrm{H} 30 \mathrm{~V}$	3／9
32 fnfd． 500 v ．	$5 / 9$	$8-8 \mu \mathrm{~F} 450 \mathrm{v}$ ．	$3 / 11$
8－16， 5 500 v	4／11	$8-16 \mu \mathrm{~F} 450 \mathrm{v}$ ．	4／6
$\because 5 \mu \mathrm{~F} 25 \%$ ．	1／3	$16-16 \mu \mathrm{~F}+50 \mathrm{v}$	4／11
$50{ }_{\mu}+12 \mathrm{l}$ v．	1／2	16－161nf（l． 500 V	$5 / 9$
$50 \mu \mathrm{~F} 0 \mathrm{~V}$ ．	2／3	$16 \cdot 32 \mathrm{nF} 350 \mathrm{v}$	$4 / 9$
Can Types		$32-3 . \mu \mathrm{F} 350 \mathrm{v}$	4／9
8 mfd .450 v ．	$2 / 3$	$32-32 \mu \mathrm{~F} 450$	5／11
8 ufd． 500 に．	$2 / 11$	（60 100 mfd ． 350	v． $7 / 6$
1013 fac .350 V ．	1／11	3,000 midd． 6 v ．	$6 / 9$

SILVER MICA CONDENSERS． $5,10,15,20$ $35,30.35,50,1041,120,150,180,200,230,300 \mu \mu \mathrm{~F}$ ，
 2，（100 pfd．）．All ai $5 d$ ．each； 39 dozen one type．
WILLIAMSON AMPLIFIER KIT．To authors 14 gns ．

MICROPHONE TRANSFORMERS
100：1

Abstract

A PUSH－PULL 3－4 watt HIGH－GAIN AMPLIFIER FOR $\mathbf{£ 3 / 1 2}$ ．For Mains iuput $200-250 \quad \vee, 50 \mathrm{c} / \mathrm{s}$ ．Complete kit of parts including circuit diagram and instructions． （1＇oint－10－point wiring diagratas available for 16 extra）．Amplifier can be used wath din type of Feeder Unis or bick up．Ositput is for 2／3 ohin speaker．（We can supply a very suitable 10in．unit by Goorluans at 31 － The anplifier can be stopplied ready for use for $£ 4 / \mathbf{1 7} 6$ ．Fill descriptive leatle： 1

MASTER INTERCOMM，UNIT with provision for up to 4 ＂Listen－Talk Back Units．＂A high gain amplifier enables speech and other sounds amplifer enables speech ang front the roons contaning renote emanating from ine oons mits to be heard at the master control． The unit is in kit form and point－to－point wiring The unit is in kit form and ponit－to－poin wing diagrans are supplied．A Walmut veneeted cabinet is inchided，Mainsimput is $200-250$ watis．Price only $\$ 519$ ．＂Listen amplification 4 watts．Price only $£ 5$ 19．6． 1 each Talk Back linit＂can be

P．M．SPEAKERS．All $2-3$ Ohnms．，5in．Goodmans， 14．9，fitin．Eliac． 14 11， 6 in．Plessey with Pentorle Trans．， 1411 ，n $\frac{1}{2}$ in．Goodmans， 16 9， 5／9，10in．GGodmans， $31,-, 101 n$ ．Plessey， 18,6 Oin，Rola with Transe， 296.

M．E，SPEAKERS．All $2-3$ ohms， $6 \frac{1}{2}$ in kola field T00 ohms．119，8in．R．A．lield（f00 ohns，12／9， 101 n. R．A．held 000 ohms．． 23 ． $10 \mathrm{in}, ~ R . A$ ．tield 1,500 ohins．， 239 ． 10 in R．A．Field 1,000 ohins， $23 / 9$.

VOLUME CONTROLS with long spindles，all values less swatch 29 ，with S．1．switch 311．WIRE
WOUND POTS，： 5 K， $10 \mathrm{~K}, ~ 20 \mathrm{~K}, ~ 25 \mathrm{~K}, ~ 50 \mathrm{~K}$ （medium length spindles）， $2 / 9$.

AMMETERS．Moving coil．G．E．C． 0.5 amps．，

R．S．C．MAINS TRAN

Fully interleaved

Primaries 200－330－250 v． $50 \mathrm{c} / \mathrm{s}$

TOP SHROUDED DROP THROUGH

	1
$350-0.350$ v． $70 \mathrm{~mA}, 40.3$ v． 3 a．， 4 v． 2.5	$15 / 9$
$350-413.50$ v． 80 m $4.6 .38 \mathrm{v}, 2 \mathrm{a}$ ．	169
$250-0-250$ v． 100 mıA．，ti．3 v． 4 a．． 5 v．	23
$\begin{aligned} & 300-0-300 \leqslant 100 \mathrm{~m} .1,6.3 \mathrm{v} .+ \text { v., } 4 \text { a., c.t. } \\ & 10-4.5 \mathrm{v} \text {. } 3 \text { a. } \end{aligned}$	23
350－0－350 v． $100 \mathrm{mA}$. ， 6.3 v．-4 v ．	
$0-4-5 \vee 3 a .$	23 29 11
$60-(1)-350 \text { v. } 15$	$29 / 11$
$\begin{gathered} 50-00-350 \\ 5 \times 3 \\ 5 \end{gathered}$	29／11
FULLY SHROUDED UPRIGHT	
$250-0-20$ v． $150 \mathrm{~mA}, 6.3$ v． 2 a．， 5 v． 2 a．，	
350－0－350 v． 70 n A．，价， $\mathrm{v}^{(2)} 2 \mathrm{a}, 5$	
$375-0.375$ v． $160 \mathrm{~mA}, 12$ v． $1.5 \mathrm{a}, 5 \mathrm{5}$ v．	18
$\begin{aligned} & 250-0-250 \text { v } 100 \mathrm{~mA}, 6.3 \\ & 0-4-5 \text { v. } 3 \end{aligned}$	$25 / 9$
$250-0-250$ v． 100 nid．，fi． 3 v． 6 a．， 5 v． 3 a．， for R1355 conversion．	$29 / 9$
	25／9
$350-0-350$ v． 100 mıA．， 6.3 v． 4 v． 4 a．c．t．，	
0－4－5 v． 3	259 339
$350-0-350 \text { v. }$	
5 v．3 a	33
$351-(0-350$ v． 160 mat．， 6.3 v． 6 a．， 6.3 v． 3 a．， 5 v． 3 ล．	$45 / 9$
$350-11-350$ v． $250 \mathrm{maA}, 6.3$ v．i，a．， 4 N． 8 a．	
$0-6$ v． 2 a．， 4 v． 3 a．for Electronic Eng． relevisor	$67 / 6$
425－0．42．5 v． $200 \mathrm{mA}$.6.3 v． 4 v v． 4 a．c．t．，	
6.3 r．-4 a．，c．t．，0－4－5 v．3 a．，suitable Willi．mnson Amplifier，etc．．．．．．．．．．．．．．．．．．．．． 51	
$425-11-425$ v． 250 mA .6 .3 v． 6 a．， 6.3 v． 6 a．，	
5 v． 3 а．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	6

E．H．T．TRANSFORMERS． 2,500 v． 5 mA
E．H．T．TRANSFORMERS．2，500 1 a MAT

VALVE SGREENiNG CANS．International Octal piece， 10.6 doz．， 13 each

EX－GOVT．ITEMS．Cathote Ray Tubes，VCRI3̄． （Ful！picture），29／6，plus carr． $5 /$ VCR130A，19／6， （Tult ficture），29／6，plus Farr．Siydelock Fuses， 75 a．， $1 / 9$ ．VR 91 ， 46 ，VRis $1 / 11$ ．Jye coaxia！pligs and sockets $7 / 6$ doz prs． $.02 \mathrm{mfa}, 5,000 \sim$ ．Tıbulars，1／9．

EX－GOVT．SMOOTHING CHOKES
330 mA .5 H .50 ohms．Potted type
250 m .40 H .200 ohms．Trop．type
250 1n． .55 H .1010 ohns．Potied type
150 mA .10 J .200 ohms．Potted type
$100 \mathrm{mLA} .10 \mathrm{H} .10 \mathrm{H})$ ohens
$100 \mathrm{~mA}, 10 \mathrm{H} .450$ ohms．
100 1ut．5 H． 100 ohms．Tropicalised
50 mA .50 H .1 .250 ohms．Potted type $50 \mathrm{~mA} 50 \mathrm{H}, 1.000$ ohms
（i）mA 10 H 100 ohns
EX－GOVT．T．V．TRANSFORMERS．All 230 v ． $50 \mathrm{c} / \mathrm{s}$ input．
1， 20 b 5 miA .4 times（could be connected

EX－GOVT．BLOCK PAPER CONDENSERS．
4 mfd． 500 Y $2 / 9 ; 8$ mfd． $5(1)$ 5， $4 / 9 ; 4$ mufl． $1,00 t), 3 / 11 ; 8 \mathrm{mfd} 1,000 \vee, 69 ;(\mathrm{mifd} .1,500 \mathrm{v}$ ； 49 ； 10 mfd． 500 v． $4 / 9.0 .1$ mifd．plus 0.1 mfd ． 8,000 v．（Comman Isolated 1 ）， 116.

EX－GOVT．RF26 UNITS．Brand new，cartoned，
596 ，plus carr．
SFORMERS（Guafalliees）

FILAMENT TRANFORMERS
dil with $200-250 \quad \because .50 \mathrm{c} / \mathrm{S}$ primaries： 6.3 n .2 a ， $76 ; 0-4-6.3$ v． 2 a．， $7 / 9 ; 12$ v． 1 a． $7 / 11 ; 6.3 \mathrm{v}$ $\begin{array}{cc}3 \\ 169 ; 12 & 9 / 11 ; 3 \mathrm{v}, 3 \text { ．or } 24 v, 1.5 \text { a．，} 17 / 6 \text { ．}\end{array}$
GHARGER TRANSFORMERS
All with $200-230$－-250 y． $50 \mathrm{c} / \mathrm{s}$ ．Primaries： $0-9-15 \mathrm{v}$ 1.5 ：1． $149 ; 0-45$ ソ． 3 a．， $169 ; 0-4-15$ 亿． 16 a $229 ; 0-4-9-15-4$ v． 3 a．， $22 / 9 ; 0-9-15-30$

SMOOTHING CHOKES
$250 \mathrm{~m} . \quad \mathrm{H} .20 \mathrm{H} .20 \mathrm{lims}$ ．Filly shrouded $16 / 9$

$101 \mathrm{~mA} ., 10 \mathrm{H} .100$ ohms．
$100 \mathrm{~mA}, 5$ H． 150 ohms．
80 mat， 10 H 350 ohms．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $5 / 6$
$60 \mathrm{ma} ., 10 \mathrm{H} .400$ ohms．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $4 / 11$

ELIMINATOR TRANSFORMERS
13rimaries s00－250 v． $50 \mathrm{c} / \mathrm{s} ., 120$ v． $40 \mathrm{~mA} .7 / 11$

120 v． 40 ma，5－0－5 v． 1.5 a．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $15 / 9$

OUTPIJT TRANSFORMERS

Nidget Battery lentode 6f： 1 for 3St，etc．$\quad 36$
Smáll l＇entode， $5,000 \Omega$ to $3 \Omega 2$
Small Pentorle， $8,000 \Omega$ to 352
Standard Pentode， $5,000 \Omega$ to 39
Standard Pentode， 8.000Ω to 38
$\begin{array}{ll}\text { Standard Pentotle，} 10,000 \text { ohms to } 3 \text { ohms．．．．} & 4 / 9\end{array}$
（inti－ratio $40 \mathrm{~mA},: 80: 1,45: 1,60: 1$
！0：1，Class 13 Push－Pull
Push－Pull watts $6 \backslash 6$ do 3 ohms．．．．． 15015
Push－Pull $10-12$ Wates $6 V 6$ to 3Ω or 15Ω
Push－Pull $1(1-1=$ Watts to match 6 V 6 to
Push－ 3 －5 or 15Ω ．．

3』2 or 15Ω Speaker ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
wound， 6 L 6 ， KI 66 ，etc．，to 3 or 15Ω ．
Williamson type，exact to author＇s spec．．．． $85 /$

UNIVERSITY RADIO LTD. Offer Guaranteed Used Equipment at Attractive Prices

C.D.P. Disc Recorder. Less amp. As new
M.S.S. Portable Disc Recorder. 1948 Model. Less amp. As new ... $£ 28100$ B.S.R. Portable Disc Recorder. Less amp. As new.................... $\mathbf{£ 4 5} \mathbf{0} 0$
Garrard Changer R.C.65A. In maker's carton. 3 only, each...... $£ 1010 \quad 0$
R.107. Receiver. Perfect £14 0
Hallicrafter S.X.28. As new ….. $£ 40 \quad 0 \quad 0$
Hallicrafter S.38. As new $\pm 18 \quad 10 \quad 0$
A.R.88. Model D. First Class cond. with S. Meter

65500
Romac 25 watt Portable Amplifier. Built-in radio unit, M/C. mike and gram. inputs. As new... $£ 2000$
Grampian 20 watt Amplifier. M/C. mike and gram, inputs. As new.............
fl5 00

```
Avo 7. As new
£14 0
```

Avo Electronic Test Meter. As
new $£ \mathbf{2 8}$ 10 0
Avo RES/CAP Bridge. As new ... $£ 7100$

Avo Wide Range Sig. Gen. As new $£ 2110 \quad 0$ Taylor Sig, Gen. 65C. As new $£ 12 \quad 0 \quad 0$ Taylor Sig. Gen. 65B. As new $£ 90$ Eddystone 640 Receiver, complete with valves Valradio Converters. D.C. to Valradio Converters. D.C. to
A.C. 100 watts A.C. 100 watts $£ 810$ 200 watts $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 10$................. 0 300 watts
f12 00
Garrard Model 201B. 2 speed. 78 r.p.m. and $33 \frac{1}{3}$ r.p.m. Can be adjusted to 45 r.p.m. As New ... $£ 1200$
E.D.C. Rotary Converter. 200250 volt. A.C. 1 ph. 50 cy. 110 watts. In metal case. As new...... $£ 9100$
H.R.O. Senior. H.R.O. P.P. 6 coils. Perfect $£ 2810 \quad 0$

Advance Model E.2. Sig. Gen. As new $£ 18100$
Ex W.D. Evershed's 500 v. Wee Meggers. Perfect. In Leather Meggers. Perfect. In Leather $\boldsymbol{\text { cases }} \mathbf{1 0} 0$

Garrard R.C.75A. 3-speed Auto
Changer. 2 heads. As new. $£ 1210$ 0
Cossor D.B. 'Scopes. From $£ 2710 \quad 0$
Taylor Windsor Model 190A.
As new ……....................... $£ 1600$
Westinghouse Metal Rectifiers.
F.W. Output. 110 v. 5 amps. Brand new each $£ 400$
B.C.221's with correct charts. As new. From
$£ 2500$

WE URGENTLY REQUIRE FIRST CLASS NEW OR USED STANDARD OR SUB-STANDARD SIGNAL GENERATORS OF EVERY DESCRIPTION. ALSO ANY TYPE OF
FIRST CLASS TEST EQUIPMENT FIRST CLASS TEST EQUIPMENT OF EVERY DESCRIPTION.
WE ARE AN OLD ESTABLISHED FIRM. WE WILL PAY THE VERY TOP PRICE. DO NOT BE MISLED. WE REALLY DO PAY CLASS EQUIPMENT. WHEN SEND. ING GOODS STATE WHETHER T.M.O. OR CHEQUE REQUIRED.

THESE ITEMS ARE ONLY A SMALL SELECTION FROM OUR STOCK OF EQUIPMENT. YOUR ENQUIRIES FOR ANYTHING THAT YOU MAY NEED WILL BE WELCOME. WROM WE HAVE OTHER EQUIPMENT ARRIVINGADAIEY: CASH OR CHEQUE WITH ORDERS. ALL ITEMS LISTED ARE CARRIAGE EXTRA. ALL ENQUIRIES S.A.E. PLEASE.

22 LISLE STREET, LEICESTER SQUARE, LONDON, W.C. 2 OUR BRANCH AT 39a (opposite) IS OPEN ALL DAY THURSDAY.

Phone: GERrard 4447, 8582 and 5507. Hours 9 to $6 . \quad$ Thursdays 9 to 1.
U.S. NAVY OSCILLOSCOPE UNITS-Containing 5 BPI Sin. Tube with fully screened mu shield isolating heater trans. Dozens of H.V. Cond., Resistors, Pots, etc; The finest value offered to date in ""Scope" units. "W.W." T/V 'scope circuit included. Price 57/6.
LABORATORY TEST EQUIPMENT. For aligning and checking Trans./Receivers covering 150 to 234 Mcs. comprising : Type BC906. Frequency Dip Grid Meter. 145-235 Mcs.
Type 1-196-B. Signal Generator. $150-234$ Mcs.
Type BCl066-B. Radio Receiver. $150-234$ Mcs. Price $\mathbf{E 1 2}$ the Set. Carriage extra.
VALVES. IS4, 8/6; 6AG5, $10 / 6$; $11726,12 / 6 ; 6 S H 7,6 / 6$; EF50, 6/6; $955,954,6 /=;$ SG215, 6/6; Pen 220A, 6/6; TTII, $8 / 6$; VR 150, $10 / 6 ; 42,10 / 6$; CK5I2AX, $9 /-; 901,9002,9003,7 / 6$; 954-955, 6/6.
MAINS TRANSFORMERS. Input 200/240 v. Output 350-0-350 or $250-0.250$ volt 80 mA . and 4 and 6.3 v .4 a . and 4 and 5 v .2 a . Price $21 / 6$. Input $200 / 240 \mathrm{v}$. Output tapped $3,4,5,6,8,9,10$, 12 $15,18,20,24,30$ volts, 2 amps ., $21 / 6$. All with one year's guarantee. D.P.D.T. RELAYS. Operate at $200 / 300$ volts D.C., 8/6. D.P. make and break, 8/6. We can supply any type of voltage and contacts at varying prices.
NEW SELENIUM RECTIFIERS. F.W. $12 / 6$ volt 3 amps ., $14 / 6$; 4 amp., $22 / 6 ; 6$ amp., $30 /-; 1$ amp., $8 / 6 ; 12 \mathrm{v} .100 \mathrm{mA}. ., 3 / \mathrm{F}$; 250 V. 100 mA . H.W., 9 . $; 80 \mathrm{~mA} .6 / 6$.
GERMANIUM CRYSTAL DIODES, $3 / 9$.
VCR97 CRTs. New and crated. Picture tested, 45/6. Bases, 3/6. NEW MAG SLIP TRANSMITTER MOTORS. Made by G.E.C. 50 v., 50 cycle. Mk. 1-2in., 15/-. Mk. $11-3$ in., $20 /$ -
NEW P.M. SPEAKERS. 5 in ., $14 / 6$; $6 \mathrm{in} ., 16 / 6$; $8 \mathrm{in} ., 20 / \mathrm{F}$; 10in., 29/6.
CARBON MICROPHONES with Matched Trans., $10 / 6$.
$0-500$ MICROAMMETERS $2 \mathrm{in} ., 15 / 6$.
M/C MICROPHONES with matched Trans., 15/-.
4ft. ROD AERIALS, set of three $6 /-$. Base $3 / 6$.
FL5 FILTER UNITS, $8 / 6$.
TYPE FT243 FREQUENCY CRYSTALS, 5.8 to 8.6 Mcs. Odd frequencies $5 / 6$. Spot $8 /$. In 25 Kc . steps.
G.E.C. $0-75 \mathrm{~mA}$. METERS. $1 \frac{1}{2} \mathrm{in}$. $\times 1 \frac{3}{2}$ in. 8 8/-

ADMIRALTY OIL FILLED TRANSFORMERS. Prim. 230 v. Sec. 3500 tapped 3000 v .85 mA . Weight $65 \mathrm{lbs} .10 \frac{3}{4} \mathrm{in} . x 9 \frac{3}{4} \mathrm{in} \cdot x$ 8 Bin . Steel cased, $£ 4$.
L.R. ARMY HEADPHONES, $8 / 6$.

NEW ROTARY CONVERTERS. Input 6 v . Output 350 v . 120 mA ., $27 / 6$.
All Carriage paid in the U.K. from Dept. W.W., The RADIO \& ELECTRICAL MART 253 B PORTOBELLO ROAD, LONDON, W.II

RADIO EXCHANGE CO.

RECEIVER S450 and S450B. Complete with valves, tuning $65 / 85$ or $85 / 95 \mathrm{mc} / \mathrm{s}$, these are ideal for Wrotham or " 2 " metre conversion. Housed in attractive robust grey cases measuring $12 \times 4 \frac{3}{4} \times 5 \frac{1}{4}$ in., these contain 4 EF54's (RF, mixer, Xtal multipliers). EC32 (Xtal oscillator), 2 EF39's ($2.9 \mathrm{mc} / \mathrm{s} / \mathrm{F}$), EB34 (det.), 615 and 6 V6 (audio). Complete with circuit 49/6, posr 2 /- Please star which required.

THE NEW 1355 CONVERSION. To produce a remarkably compact Televisor-Sound, vision. Time bases and power pack on ONE 1355 chassis-without the use of expensive R.F. units OUT DATA contains full instruction for all five TV channels and calls for a minimum of extra parts.
Due to improvements in paper situation NOW ONLY, $2 / 6$ per Due to improvements in paper situation NOW ONLY, $2 / 6$ per
copy (post $2 \frac{1}{2} d$). copy (post $2 \frac{1}{2} \mathrm{~d}$).
| 355 RECEIVERS complete with II valves, in wooden cases Ist grade $45 / \mathrm{m}$; 2nd grade $35 / \mathrm{m}$. (CF).
NEW VALVES. EF50 4/6 (Brit.), 6/6 (Red Sylvania), 5U4F 7/6.
POWER UNIT CHASSIS, with $5 Z 4$ and VU120 (EHT) rectifiers, choke, condensers, transformer, relay, etc. Measures only $7 \times 6 \frac{1}{2} \times 3 \frac{3}{4} i n$., $10 /=$

TRANSFORMERS: $230 / 24 v$. , 2A., $9 /-; 230 / 115 v ., 75$ watt, $9 / 6$; output, multi-tapped, 3/6.

MIDGET AMPLIFIERS, complete with full instructions for converting to a really small 'gram amplifier, or a tiny radio $\begin{array}{ll}\text { converting to a really small gram amplifier, or a tiny radio } \\ \text { receiver (both mains operated). Three valves included. } & 19 / 6 .\end{array}$

CARBON MICROPHONES: in small hemispherical cases, with switch, (boxed), 4/6. Hand-type microphones, with pressel switch, 7/6.

14 ST. MARY'S STREET BEDFORD

5 Harrow Road, Paddington, W. 2
PADdington 1008/9 and 0401
OPEN MONDAY to SAT. 9-6 THURS. I o'clock.

RADIO-GRAM CHASSIS 3 Wave-band Superhet. Med., long and short. 5 Latest Type MULLARD Valves. 4 Position Switching. Gram., med., long and short. Provision for A.C. Mains Extension Speaker. $110 / 250$ volts. Chassis Ilin. $\times 7 \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. Scale 8 in. Square. Or Chassis $13 \frac{1}{2} \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. DiallOin. $\times 5 \frac{1}{2} \mathrm{in}$. PRICE $£ 10 ; 5 \%$. BRAND NEW AND GUARANTEED. CARR., PACKING AND INS. $10 /=$

PYE $45 \mathrm{Mc} / \mathrm{s}$ STRIP. TYPE 3583 UNITS
Size bain. \times Ain. Bill. Complete with 45 Mc/s. Pye
 sound ambl visions can be bucorporated on this chassis sound atul vishon can be New rondition. Moditication
with minimum space. data supplied. Price $\mathbf{E 5}$. Carriage paid.

METROVVIC (METROSIL) PENCIL TYPE E.H.T. REGULATOR UP to $10 \mathrm{k} . \mathrm{v}$. TYPE E.H.T. REG
 L.T. RECTIFIERS

25/73 TRII96 RECEIVER

This unit is complete with di valves. 9 EFB6, 2 EF39, 1 EK32, 1 EBCB3 and $465 \mathrm{kc} / \mathrm{s}$ I.F.T.s. In new conn-
dition. Circuit and conversion data supplied. $39 / 6$.
S.T.C. RECTIFIERS E.H.T.

[^21]| SEND |
| :---: |
| STAMPS |
| FOR NEW |
| 1953 |
| $28-P A G E$ |
| CATA- |
| LOGUE |

H.T. RECTIFIERS

W.1.

6 WATT AMPLIFIER (UNDISTORTED)

Manufactured by Parmeko and Sound Sales for Admiralty. 4 valves, PX25, 2-AC HL, MU14. Output Matching and 3Ω and $15 \Omega, 100 / 250 v$ A.C.

COMPLETE IN STEEL GREY AMPLIFIER CASE. £12-10-0
CALL FOR DEMONSTRATION.

MILLIAMMETERS				
$500 \mu \mathrm{~A}$	9.C.	2 n in.	Round	15/6
$1 \mathrm{~mA}$	M.C.	2 Lin.	Square Flugh	$12 / 6$ $22 / 6$
1 ma	M.C.	${ }_{2}^{2} \mathrm{in}$ in.	Flush	$27 / 6$
5 mA	M.	2in.	Square	76
10 mA	M.C.	21 in .	Flush	126
30 mA	M.C.	2 in .	Round	76
80 mA	M.C.	2tin.	Flus	126
50 mA	M.C.	2 in .	square	16
200 ms	M.C.	2lin.	Flush	126
VOLTMETERS				
15 V (atc	M.I.	gith.	Flush	12/6
150 V	M.C.	$2 \frac{1}{2}$	Flush	12/6
300 V	M.C.	2 in .	Square	$12 / 6$ $22 / 6$
$2,500 \mathrm{~V}$ $3,000 \mathrm{~V}$	M.C.	2inin	Square	25.
$3,000 \mathrm{~V}$ $4,000 \mathrm{~V}$	M.C.	${ }^{2} \frac{1}{2} \mathrm{ln}$.	Square	251\%
$3,500 \mathrm{Y}$	M.C.	3in	PROJECTION	31\%
300 V (50)	A.C.	PROJ	. Dial	75%
AMP.METERS				
3 A	T/C	${ }_{2} 2 \mathrm{in}$.	Square	7/6
6 A	T/C	${ }_{6}^{2} \mathrm{y}$ in.	Flush ${ }^{\text {Flush Mty. }}$	10/6
${ }_{20}^{20} \mathrm{~A}$	M.I. ${ }_{\text {H.I }}(50 \mathrm{c}$)	2 in .	Flush Mtg. PROJECTION	21.
$M / C=$ Moving Coil. $M / I=$ Moving Iron. $T / C=$ Thermo-Coupled ALL METERS ARE BRAND NEW IN ORIGINAL BOXES. except the $500 \mu \mathrm{~A}$ MILLIAMMETER which is ex-equipment.				

WESTINGHOUSE I4D/972
G.E.C. METER RECTIFIER,

RECEIVER R1355. As specified for " Inexpensive
 Brand new in original packiuk case
RF, 25/-; RF25, 25/0; RF $26,59 / 6: ~ R F 27,59 / 6$.
RECEIVER UNIT TYPE I59, size 8im, $\times 6$ in. $\times 4 \frac{1}{2}$., containing VR91, VR92, CVibt, VRin ant
arrial rods, I.F. trans.,
coils remored by m.O.S., 35\%-, carr. paid. (Luss

VC.R.SITC BLUE \& WHITE $6 \frac{1}{3} i n$. TUBE Thls tube replaces the VOR97 and VCrbit withnut alteration and gives a full blue and white picture
Brand dew in original crates, $45 /$, carr. free.

CATHODE RAY TUBES

VCR97, Guaranteed full T/V picture
(carr, 2/-)
(Carr, ${ }^{\text {VCR517. }}$ Guaranteed full T/V picture (with mu-metal screen)
3BPI, with shield Buitable for T/V or scope MU-METAL SCREENS for VCR97 or MU-METAL
517 P.P. 1/6 for VCR97 or 517 6in. ENLARGER for VCR97 or 517 $£ 2 \quad 0 \quad 1$ P.p.1/6. \quad I\% $\#$

> for $55 /-$
> fX25, 12/6. Matched pXes's at 25/- per pur Ragtheon CKБ10AX sub-Minature Valves, brant new, 7/6. GU50, $12 / 6$.

No, 38 "'WALKIE TALKIE" TRANS.

 RECEIVER, complete with Throat Mike, phones. Junction Box and Aerial Rods in canvas bak. J゙rea, units are as new and tete with battery. $\$ 410 /$.
T.V. PRE-AMPLIFIER FOR LONDON AND BIRMIMGHAM. Complete with 6A
plug in to your set, 27/6. P.1. 2/6

VCR139A. $2 \frac{1}{2}$ in. Brand new in original cartons,

INDICATOR UNIT TYPE SLC5 This Thit is ideal for couversion for a' 'scope' Unt or basis fur Mulget Television. It contains C/R Tute cradle. also tarthing clip. 1-VR60, 2-VR65, 24 mid. (wid) wkg. condenser, potentiometers anil a varied asanrtment of rcsistors and condensers. These Units are in new condition and packed in wooden transit
cases. The C/R. Tube will be tested before despatch.

INDICATOR UNIT TYPE I82A unit coutaing VCR517 Cathode Ray 6in. tube, complete with Min-uetal screen, ${ }^{3}$ EF50, 4 SP61 and $15 \mathrm{U}+\mathrm{G}$ vaives 9 wire-wound volume controls ant
puntity of resistors and condensers. Suitithe elther for hasis of television (full picture guaranteed) or Osillascoy. Offered BRAND NEW (lese relay) in original packing case at 79/6. Plus $7 / 6$ carr.

VIBRATOR PACKS	
Input $6 \mathrm{r} .$, Output $200 \mathrm{~F} ., 60 \mathrm{~mA}$	25/*
Trput $6 \mathrm{v}$. . Ontput $180 \mathrm{v} ., 40 \mathrm{~mA}$. (cx. 21 set)	$17 / 6$
200 mA	$50-$
Input 6 v., Output 200 v., 80 mA . (Masteradio)	90-
luput 12 F ., Output $300 \mathrm{~F} .100 \mathrm{~mA}$.	$30 \cdot$
6s s. Vib. Trans. $250 \nabla_{\text {-i }} 80 \mathrm{~mA}$.	76

WEARITE

705 Coil Pack 3 watreband
nota aud $502465 \mathrm{kc} / \mathrm{s}$.
10

 Wearite Mains Trans. Input $110 / 250$ volts
 PLESSEY midget type 230 volts input, output $230-0$ $2 ; 0$. 50 ma ., 6 volt, 2.6 amps ., screened primary, $12 / 6$.
WEYMOUTH SUPERHET MINIATURE COIL PACK Covering Med./Long/Short wave bands. Irom cared
colls. Dimens.: Henght lidin. Length 3 hin. Widith ${ }_{9} \frac{7}{6} \mathrm{in}$. Spindle length 2 in . Complete with Circuit Price $19 / 6$.

TUNING CONDENSERS

\Rightarrow gang . 0005 standard i apindle, with trimmers 3 gang . 0005 with ceramic insulatlon $\frac{1}{2}$ spindle Milget two gang, 0000875 , with trimmers. Nize Milket nisos mfit. 2 gang tuning condenser. size Only ${ }^{2}$ inin. $\times 1$ 青in. $\times 1$ gin.

WANTED

723 A/B and CV129 Klystron Valves, Philips Trimmers, $3-30 \mathrm{pF}$. RL18, NR88. Any quantity.

SPECIAL THIS MONTH!

II32A RECEIVERS. II-valve Superhet receiver, covering 100 to $124 \mathrm{Mc} / \mathrm{s}$, using four VR53, two VR56, and VR66, VR67, VS70, VR54 and VR57 valves. Fitted with tuning meter, slow motion drive. R.F. and L.F. gain control, etc. Circuit: R.F. amp. freq. changer, oseillator, stab., three I.F. amps., B.F.O., det. Ist, audio and output. Brand new in transit case, with circuit diagram. Price $59 / 6$ plus 7/6 carr. Cheapest in the country
INDICATOR UNIT TYPE 157, Has same line-up as Indicator Type 62, viz., VCR97 C.R.T., mask and mu screen, 16 SP6I, 2 EB34, 4 EA50 valves, 1 mfd .2 .5 kV condenser, 15 potentiometers, Yaxley switches, Muirhead slow-motion dial, resistors, condensers, etc. The well known unit for TV conversion or oscilloscope work. Absolutely brand new in transit case. Price $£ 3 / 19 / 6$ plus $7 / 6$ carr.
R3084A RECEIVERS (the later edition of the R3I70A). The well known receiver used in the "Practical Television". Televisor with 7EF50, 2 EF54, 2 EA50, I EC52, 1 MU|4, I HVR2 valves, 3 -stage $30 \mathrm{Me} / \mathrm{s}$ I.F. strip, resistors, condensers, etc. Price $75 /$, plus 10 - carr.

COLLARO GRAM MOTOR AND TURNTABLE. AC37 motor for $110-130 \mathrm{v}$. and 200-250 v. A.C. Governor speed controlled ($78 \mathrm{r} . \mathrm{p} . \mathrm{m}$.). Brand new and worth $£ 4 / 10 /-$. Our Price $47 / 6$, plus $2 / 6$ post.
AERIAL COUPLING UNIT TYPE 39 (IOD/1731) with 0.6 amp . R.F. $2 \frac{1}{2} \mathrm{in}$. circular meter, $0-3 \mathrm{amp}$. Thermo-couple, 2 in . square meter, 100 watt loading lamp, aerial tuning coils, ceramic high voltage con densers, etc. In strong wooden case. $13 / 6$, plus 26 carriage
AERIAL COUPLING UNIT "C" (for No. II Se*s) ZA0032 with $0-350 \mathrm{~mA}$ meter, tuner, press switch, etc., housed in strong metal case $6 \frac{1}{2} \mathrm{in} . \times$ Sin. $\times 5 \frac{1}{4} \mathrm{in}$. Price $6 / 6$, plus $1 / 6$ postage.
AI27I AMPLIFIER UNIT with VR56 (EF36) valve, 400Ω relay (4 makes, 2 breaks), 10,000 ? Pot., resistors, condensers, etc., in black metal case $5 \mathrm{in} . \times 5 \mathrm{in} . \times 5 \mathrm{in}$. Brand new at $9 / 6$ each, plus $1 / 6$ post. METERS. By well known manufacturers. $0.200 \mathrm{~mA} 2 \frac{1}{2} \mathrm{in}$. circular. Brand new at $10 / 6$ each, also $0-500$ microamp 2 in . circular (calibrated TYPE P.IO AZIMUTH COMPAS
TYPE P. 10 AZIMUTH COMPASSES. In strong wooden box, $13 / 6$ each, plus $2 / 6$ post.
MAINS TRANSFORM
MAINS TRANSFORMERS. Input 200-250 v. output $475-0.475 \mathrm{~V}$ 200 mA at 326 , plus $2 / 6$ post. Input 200-220-240 v., output 320-0 320 v. 75 mA 6.3 v. 3 a. (tapped at H.V.) 5 v. 2 a. (tapped at 4 v.), at $13 / 6$ each, plus $1 / 6$ post.
WIRE-WOUND RESISTORS. $120.000 \Omega 80$ watt at $2 / 6$ each, $24 /$ doz. Plus post. $3,000 \Omega 6$ watt at $1 /-$ each. $10 /=$ doz.
RECTIFIERS, 220 v .30 mA at $2 / 6$ each. 6 v . or 12 v . I amp. F.W.B. at $7 / 6$ each. 6 v . or 12 v .2 amp. F.W.B. at $12 / 6$ each.
CHOKES, 9 henries 100 mA at $7 / 6$ each
CRYSTAL MONITORS TYPE 2 (less valves and crystals). Useful chassis 7in. $\times 5 \mathrm{in}$. $x 5 \frac{1}{2} \mathrm{in}$. with cover. Contains 6 way Yaxley, on/off switch, indicator lamp holder, large phone jack, res., cond., L.F. choke and transformer, etc. This unit is for checking frequencies of $T x$ and receivers, battery operated, but can be modified for mains use. Instrong wooden case, 6 ' 6 post free
CONDENSERS. 2 mfd .4 kV at $10 / 6$ each, plus $1 /-$ post. 2 mfd . 3 kV at 6.6 each, plus 6 d . post. $1 \mathrm{mfd} .1 .5 \mathrm{kV}, 4 \mathrm{mfd} .1,000 \mathrm{v} ., .025$.025 mfd .7 kV wkg., 14 kV test, all at 3.6 each, plus 6 d . post. 64 mfd . 450 v . electrolytic, $.05+.054 \mathrm{kV}$ (can be used as .I mfd 4 kV) at $4 / 6$ each, plus 5 d . post. 8 mfd .450 v at 2 -each, plis 6 d . post. 4 $4+4 \mathrm{mfd} .350 \mathrm{v}$. at $1 / 9 \mathrm{each}, 50 \mathrm{mfd} .12 \mathrm{v}$. at $1 / 6$ each. .001 mfd .4 kV at 9 d . each. 01 mfd. $1,000 \mathrm{v}$. at $7 / 6$ doz. Please add postage.
GERMANIUM CRYSTAL DIODES. G.E.C. wire.ended, $2 / 6$ each, 24/- doz.
ALUMINIUM FRETS. Open mesh ($\frac{3}{4}$ in. dizmond mesh) $18 \mathrm{in} . x$ $6 \frac{3}{3} i n$. at $15 /-d o z$. Small close mesh with $\frac{1}{4} i n$. frame, overall size $16 i n$. x 7 in at $21 /-d o z$. plus 9d. post
FILAMENT LAMPS, TELEPHONE JACK TYPE No. $2 A$, 24 V at 6-doz.
RECEIVER TYPE 161, Containing CV66 grounded grid triode, two VRI 36 (EF54) pentodes and VRI37 (EC52) valves. A 4-position coil turret. Has magnetic pawl and ratchet motor included. Covers 170 to 230 meg., 45 mé. I.F. output, $19 / 6$ each, plus $1 / 6$ post.
YAXLEY SWITCHES. 4 -pole 3 pos. 2 bank at $1 / 3$ each, $12 / 6 \mathrm{doz}$. POTENTIOMETERS. 500!! 8 watt, wire-wound. Brand new, well known manufacture. 26 each.
VALVES EF50 (Red Sylvania)
VALVES, EF50 (Red Sylvania), 6/- each. EF50 (white) 5/- each. VIBRATORS, 4 PIN 12 VOLT (ZA4878) made by Mallory (Type 650). Price $4 / 6$ each, 48 - doz.

CERAMIC COUPLERS (as used in BC375E), 2 in . O/Dia. for $\frac{\mathrm{din}}{}$ spindle, Price 9/- doz.
P.M. SPEAKERS. 10 in . Rola (less transf) at $24 / 6$, plus $1 / 6$ post.

AIR SPACED TRIMMERS. 25pf, 50 pf . and 100 pf , at 816 doz .
POLYTHENE RODS. 5 16in. dia., 12 in . long, 6 - doz.
MOVING COIL HANDMIKES (No. 7) at $5 /=$ each. TANNOY POWER MICHROPHONE INSETS (YA28IS) for Tele L.S. Nos. I, 2 and 3, at 26 each. THROAT MIKES (ZAI3935), BRAND NEW AND BOXED COMPLETE WITH LEADS, 26 each. MORSE KEYS No. 8 , at $2 / 6$ each. COLLINS MIKE TRANSFORMERS Ratio 41 : l. potted, $4 / 6$ each. Please add postage.
MU METAL SCREENS for VCR9 Tubes, etc., at $6 / 6$ each
TAGSTRIPS. All brand new. Manufacturer's surplus. 9 way ($6 \mathrm{in} . x \frac{3}{1} \mathrm{in}$.) at $4 / 6 \mathrm{doz} .16$ way ($6 \frac{3}{4} \mathrm{in}$. x 者in.) at $4 / 6 \mathrm{doz} .7$ way ($3 \frac{1}{4} \mathrm{in} . \times$ $2 \frac{1}{i n}$.) at $4 / 6$ doz. 6 way sereen terminal tab ($3 \frac{3}{4} \mathrm{in} . \times \frac{3}{6} \mathrm{in}$.) at $4 / 6 \mathrm{doz}$. TRIMMER CONDENSERS. Bakelite $100 / 100 \mathrm{pf}$, $100 / 50 \mathrm{pf}$, at 46 doz. Ceramic $2-8 p f$ at 46 doz. Ceramic $100 / 100 \mathrm{pf}, 220 / 220 \mathrm{pf}$, and
$250 / 250$ pf at $9 /=$ doz., plus 60 . post.

C. MRRIS \& CO.,
 Please note our new address:-

©O COMMERCIAL ST.. NEWPORT, MON
Telephone: Newport 4711
Also at 25 Wyndham Arcade. Cardiff
All mail orders and enquiries to Newport branch please.
H.R.O. SENIOR RECEIVERS. With A.C. P.P., 5 coils, $£ 31 / 10 / \%$ D.S.T. 100 RECEIVERS, as new. Coverage is 7 bands from $30 \mathrm{Mc} / \mathrm{s}$. $1050 \mathrm{Kc} / \mathrm{s}$., 630 each.
HAMMERLUND BC779B. Mint condition, rack mig., $£ 4210 \%$ HALLICRAFTERS SX28, S27, S20R, S41, S38, et =. Ali
AR88LF, AR88D, CRI00, from stock R1155 RECEIVERS, new. A.C. D.C. MOTORS, suitable for sewing machines. $47 / 6$ each. A.C. D.C. 12 v .15 v . MOTORS, long spindle for models, 15 /-each. 20 WATT P.A. RACK MOUNTING AMPLIFIERS, complete with power pack, 200/250 v. A.C. less valves, $66 / 10 \%$., Valves2 type P×25. I MH4 and I MU14. $£ 2 / 15$ - per set
NEW M/C MICROPHONES, hand type, with 12 yds. heav/
B.C. 221 FREQUENCY METER, from stock. Many items of American equipment available.
TEST EQUIFIMEN1. We nold a comprehensive stock. Multirange meters at 1,000 and 20,0000 , p.v., valve testers, signalgenes. 4,000 Ω EARPHONES, $11 / 6 \mathrm{pr}$
$10,000 \Omega 2$ POTENTIOMETERS, large size, by Colvern, enclosed, $8 / 6$ each
TYPE 73 AND 74 VELLODYNE UNITS in stock.
C.R. 100 RECEIVERS, perfect order, $628 / 10$

MAINS TRANSFORMERS. Special offer, not ex-W.D., $200 / 250 \mathrm{v}$. in put tapped. Output $250-0-250 \mathrm{v}$. at $100 \mathrm{~mA} ., 5 \mathrm{v}$. 3 a., 6.3 v. $4 \mathrm{a}, 21 / 6$ each.
$350-0.350 \mathrm{v}$. Ellison at $120 \mathrm{~mA} ., 6.3 \mathrm{v}$. 5 a., C.T. 5 v. $3 \mathrm{a} ., 37 /-$. All types in stock.
EVERSHED BRIDGE MEGGERS, 250 v . Special price, E12/10/-each.
D.C.A.C. CONVERTERS, 230 v. D.C. input, 230 v. A.C. output at 140 watts, 69 .
MAGNAVOX 12 in . P.M. SPEAKERS, snip at $£ 5 / 10 /$. each. G.E.C. 7 WATT V.H.F. MOBILE TX RX. Complete with 12 v rotary p/pack, $30.9,81.1$ and $81.3 \mathrm{Mc} / \mathrm{s}$., special offer, $£ 30$. EDDYSTONE 840 RECEIVER. Perfect, at $£ 22$,
EDDYSTONE 504 RECEIVER, perfect, at $£ 21$.

- I F F 350 v. METAL CASED TUBULARS, U.S.A., at $4 / 6$ doz. (minimum 2 doz.).
H.R.O. COILS. $46-96 \mathrm{Mc} / \mathrm{s}$., etc., at $\mathbf{6 2 / 5}$ - per coil

LARGE STOCKS OF MOTORS. A.C.D.C. and A.C. I/16, Y/ $12, \frac{1}{4}, \frac{1}{3}$ h.p.
Your post enquiries welcomed. S.A.E. for reply please. Prices quoted do not include carriage and packing.
All types of equipment purchased. Top prices paid.

SERVICE RADIO SPARES
 4, LISLE STREET, LONDON, W.C. 2

Telephone: GERrard 1734

L. WILKINSON NHOLESALEE 19, LANSDOWNE ROAD, CROYDON Phone: CRO 0839 WILCO " CROYDON
 RELAYS-P.O. TYPE 3,000

BUILT TO YOUR SPECIFICATION-EARLY DELIVERY QUOTATION BY RETURN-PLEASE STATE RESISTANCE OF COIL REQUIRED AND CONTACT BUILD UP
RACKS. Standard 6 ft . P.O. type for lin. panels, steel channel sides correctly drilled, heavy angle base.
TEST SET 205. Wavemeter range. 3.05 to 3.35 centimetres, built-in oscillator with 9 valves including Klystron type CV.I29, etc., in good condition, 625 .
VARIAC TRANSFORMERS. Type 80 CO in brass case, oil filled, 50 cycles, P. $200 / 240$ volts S. 220 volts, 7.5 amps, $\mathbf{E T / 1 0} / \mathrm{-}$ each. Also an open type, 500 cycles, $180 / 0-180$ volts, $7+7 \mathrm{amps}$., $\mathbf{f} 1210$ KEY SWITCHES, P.O. type 212 or 215 , available in quantity 5 - each RECTIFIER UNIT, P.O. type. Input $200 / 250$ volts A.C. Output
50 volts 0.75 amps D.C. Westinghouse. $70 /=$, carriage $10 /$. JACKS, Bakelite Igranic, P.73, $1 / 6$ each.

LYONS RADIO Ltd.

24 VOLT ACCUMULATORS. American made. as new and unused, 11 amp-hour
ander (at $5 \cdot \mathrm{hr}$. rate). Size 10 bin. $\quad 10 \mathrm{in}$. $\times 5$ hin, with terminal cover project
 AMP-METERS. Bakelite case, projection type fins, dia. $0 / 15$ amps, moving iron, calitrated at 50 cps. Can also the used on 1.C. PRICE 32/6. post 2/*
TRANSFORMERS. Service rating Primary 230 v. 50 cps., vecondary 40 v. at 2 A. INDICATOR UNITS TYPE 88. Containing a cathode ray tube VCR97 (T.V. picture teated), '6-V'tin's, 3-VR5H's, i-s'R92, spinde couplers, extemsion spindles. Mu-metal screpth. H. ${ }^{\prime}$, condengers, pots. slug tuned coiks and dazens of other useful components,
mize uver onter cise 14 in. Gin. Tin. Condition as new and unused supplied in makers transit crate. PRICE ONLY 596 or less yalves $45 /$-, cirriage either case $6 / 6$. TEST SETS TYPE 102. Mains operatel teat sets eruitting 25 eps. and 50 eps. syuchro-
 with it mait
secondary.
 circuit diagrath incluled. PRICE 326 , 6 , In new and unused condition with PLUGS AND SOCKETS TRADE ENQUIRIES INVITED.
3 GOLDHAWK RD. (Dept. M.W.), SHEPHERD'S BUSH, LONDON W. 12 Telephone: Shepherd's Bush 1729

GRRM感ND BOS, Rid.

GRUNDIG TWO-SPEED TAPE RECORD

 ER. We have limited stocks of this famous recorder for immediate del॥very. Price 884 (the manufacturers operate an Hire Purchase Scheme for this recorder, details of which can be supplied on request). ,WHANDA WIRE ANDCABLESTRIPPERS, to take all size flexes and cables up to fin. diam., with 3 alternative heads and triple screw adjustment. These are brand new and boxed, and the original price was $15 / \mathrm{m}$ each. Our Price $4 / 3$ each or $48 /=$ per doz.

ELECTROLYTIC CONDENSERS. 32 mfd 450 volts, 250 mA ripple, can., $4 / 6 ; 8 \mathrm{mfd}, 450 \mathrm{v}$ $1 / 9 ; 8+8 \mathrm{mfd} ., 450$ v., $3 / 3 ; 8+16 \mathrm{mfd} ., 450 \mathrm{v}$. $4 /-; 8+32$ mfd. $450 \mathrm{v}, 4 / 6 ; 16+16 \mathrm{mfd}$. 450 v., $5 /-; 32+32 \mathrm{mfd} ., 350$ v., $3 / 6 ; 25 \mathrm{mfd}$. $25 \mathrm{v} ., 1 / 9 ; 50 \mathrm{mfd} ., 12 \mathrm{v} ., 1 / 9 ; 50 \mathrm{mfd} ., 50 \mathrm{v}, 2,2$. $1 /$

GARLAND TAPE RECORDER OSCILLATOR UNITS. With valve, for use with high impedance heads only. Price 35/\%

TAPE RECORDER OSCILLATOR COILS. $6.3 \mathrm{mH}, 45 \mathrm{kc} / \mathrm{s}$, for high impedance heads only. Price 6/9 each.

TELEVISION MAGNIFYING LENSES. 6 in clear, $19 / 6$; 9 in . clear or filter, $50 / \mathrm{-}$; 12 in ., clear or filter, 70 -. Please state which and add $5 /-\mathrm{for}$ carriage and packing.

ELECTRON COPPER AERIALS. $50 f \mathrm{ft}, 2 /=$ 100ft., 3/9. Trade Supplied.

DECALS. $500 \frac{1}{1}$ in, high white transfer letters and words for marking electronic equipment. Price $4 / 9$ per book. The new Decals book for the amateur now available. 29 words per page, 4 pages radio and audio, 4 pages T / V and Scope, 2 pages misc incl. Tx. and Tape Recording, 3/6 per book. Trade Supplied.

COMMERCIAL POTENTIOMETERS. AII usual values. Less switch, $2 / 3$; with single pole switch, $3 / 6$; with double pole switch, $4 / \mathrm{m}$.

MAINS TRANSFORMERS. All at $19 / 6$ each. MTI. 250-0-250v., $80 \mathrm{~mA}, 0-4-5-v_{1}, 2 \mathrm{~A}, 0-4-6.3 \mathrm{v}$ 3 A.
MT2. $350-0-350 v_{2}, 80 \mathrm{~mA}, 0-4-5 \mathrm{v}, 2 \mathrm{~A}, 0-4-6.3 \mathrm{v}$. 3 A
MT3. $0-30 v_{\text {., tapped }}$ to give $3 v_{.,} 4 v_{1,} 5 v_{-1} 6 v$. $8 \mathrm{v} ., 9 \mathrm{v}_{\mathrm{n}}, 10 \mathrm{v}_{\mathrm{k}}, 12 \mathrm{v}_{\mathrm{k}}, 15 \mathrm{v} ., 18 \mathrm{v} ., 20 \mathrm{v}$. MT4. 4 v .4 amp ; 10 v .4 amp ; $20 \mathrm{v} .3 \mathrm{amp}$. for MT5. Auto: 0-10-120-200-230-250 v., at 100 watt ENGRAVING TOOL. For $200-240$ v. A.C mains. Suitable for use on metals or plastics Price $10 /-$ each

BELLING AND LEE PLUGS AND SOCK ETS. 5 way $2 /-, 7$ way, $2 / 3$ complete.

JONES PLUGS AND SOCKETS. 4 way, 1/9; 6 way, $19 ; 8$ way. 2/-; 10 way, 2 ; 6 METAL RECTIFIERS. RM1, 125 v . (a) 80 mA . 3/11. RM2, 125 v . (a $100 \mathrm{~mA}, 4 / 3$. $14 \mathrm{D} / 972$, 250 v. (a) $25 \mathrm{~mA}, 6 / 6.12 \mathrm{v} . \frac{3}{4} \mathrm{~A} ., 6 / \mathrm{m} .6 \mathrm{v}$. 1 A 4/6. 12 v $2 \mathrm{~A} ., 12 / 6$. $12 \mathrm{v} 2 \frac{1}{2} \mathrm{~A}, 16 / 6.12 \mathrm{~V} 4 \mathrm{~A}$ 21/-
HEADPHONES. 4,000 ohms, per pair, 11/-. CRYSTAL DIODES. Germanium Vacuum sealed glass type with wire ends, $2 / 8$ each or 30/- per dozen.

GARLAND LU7B PORTABLE TAPE RECORDER

Incorporating the latest Lane Tape Table and the Garland UE7B Record Playback Amplifier together with ball microphone and 1,200ft. reel of tape and spare spool, in portable cabinet finished in an attractive vinyl plastic. Weight approximately 36 lbs . The Tape Table includes three specially designed Verdik motors and has provision for fast rewind and forward wind without tape handling, with single switch knob for selection of rewind and record or playback. The amplifier system uses standard valves throughout (ECC35. 6J5, KT6i, 6V6G, 5Z4G, 6UG5). Imputs are provided for microphone and for radio or provided for microphone and for radio or
gramophone; record-level indication is by gramophone; record-level indication is by
magic eye; the 8 in . high flux PX speaker magic eye; the 8in. high flux $P X$ speaker
provided is adequate to handle the output of provided is adequate to handle the output of
3.5 w . without appreciable distortion; and provision is also made for a high impedance output to an external amplifier system, and a low impedance (3 ohms) output for external speaker, with or without the internal speaker in circuit. We feel conficent that this Recorder will be accepted as setting a new standard in tape reproduction within its price bracket. Price 42 guineas, plus 10/-carriage etc. Trade supplied.

THE LATEST LANE TAPE TABLE. As used in our LU7B Portable Tape Recorder, and as described above. This item is available separately at $£ 17 / 10 /$-, plus $10 /$ - carriage etc. Trade supplied.

UETB AMPLIFIER. As used in our LU7B Portable Tape Recorder and as described above. Also available separately, at $£ 13 / 2 / 6$. Plus $7 / 6$ carriage etc. Trade supplied.
MAGNETIC TAPE. Scotch Boy MCl-111 1,200ft., 35/=; 600ft., 21/-; 300ft., 12/3. Spare 7 in spools, 4/3. Ferrovoice, the new kraft-based medium coercivity tape : 1,200ft., 22/6. Spare 7in. spools, 4/6. Trade supplied.

GARLAND AC2A AMPLIFIER. This amplifier provides a maximum output of 3.5 watts. Standard valves ($6 \mathrm{SH} 7,6 \mathrm{SH} 7,6 \mathrm{~V} 6 \mathrm{G}, 5 \mathrm{Z} 4 \mathrm{G}$) are used throughout and H.T and L.T. supplied are from mains transformer chus ensuring isolated chassis. A volume and a treblecut control are incorporated By careful circuitry and the use of negative By carefur circuity and uality of reproduction feedback extremely good quality ofreproduction is ensured ; the following are actual measured characteristics on a standard production amp ifier Distortion . 8% for 2 w . output at Kic Fre quency response within Idb from $60 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{~K} / \mathrm{cs}$. Although the amplifier as normally supplied is intended for use with gramophone pickups of the Acos GP20 type, it can if required be supplied with adequate gain to enable its use with crystal cell microphones. Price $66 / 2 / 6$, plus 5/-carriage etc. Trade supplied.

UNDRILLED CHASSIS. Four-sided size $13 \mathrm{in}, \times 7 \mathrm{in}, \times 2 \frac{1}{2} \mathrm{in} .20 \mathrm{~s} . w . g$. bright mild stee! 5 each, $18 \mathrm{siw} . \mathrm{g}$. aluminium $6 / 8$ each ; two-sided with two straps, $12 \mathrm{in} . \times 4 \mathrm{in} . \times 2 \frac{1}{3} \mathrm{in} ., 20 \mathrm{~g}$. steel, $3-, 18 \mathrm{~g} . \mathrm{Ali,4} 4 /-$. Two sided with two straps $6 \mathrm{in} . \times 5 \mathrm{in} . \times 2 \mathrm{in} ., 20 \mathrm{~g}$. steel, price $2 /-$ each, 18 g. Ali, price $2 / 6$ each.
I.F. TRANSFORMERS. By a famous manufacturer. $465 \mathrm{~K} / \mathrm{c}$ small size rectangular can. Special offer for a limited period 7!- per pair.

TYANA SOLDERING IRONS. Lightweight 40 wart irons with easily interchangeable elements and $3 / 16 i n$ diameter bits Voltage ranges, $105 / 110$ v. $200 / 220$ v. and $230 / 250$ v. Price $16 / 9$. .The iron that makes soldering a pleasure. Trade Supplied
BRIMISTORS. Non-linear resistors to protect valves from current surges: CZI, 0.3A 3/6; valves from current surges: CZI, $0.3 A .3 / 6$;
$C Z 2 \quad 0.3 A ., 2 / 6 ; C Z 3,0.2 A ., 1 / 6 ; C Z 4,1.25 A$, $\begin{array}{lll}C Z 2 & 0.3 A ., 2 / 6 ; ~ C Z 3 \\ 5 /-; & C Z 6,0.45 A ., 3 / 6 .\end{array}$

AMPLION TESTMETER. 10 ranges A.C. and DC. up to 500 v . Resistance up to 200,000 ohms 1,800 ohms per volt A.C. and D.C. Price $\mathbf{£ 5}$.

ENGRAVED KNOBS. $1 \frac{1}{4} i n$. diameter, fluted in Walnut or lvory with the following markings : in Walnut or lvory with the following markings: Volume, Vol-on-Off, Treble, Bass, Tone, Tuning,
Wavechange, S-M-L-On-Off, Brilliance, BrillianceWavechange, S-M-L-On-Off, Brilliance, Brilliance-
OnoOff Contrast, Focus, RI-R2-PB. Price $1 / 6$ each. Plain knobs to match, $1 / 3$ each.
GENERAL PURPOSE TRIODES. Type 7193 6.3 v. heater. Similar to $6 J 5 G$. Pice $2 / 6$ each.

VARLEY MAINS TRANSFORMERS. Primary 10-0-200-220-240 volts. Secondary 300-0-3C0 volts at 150 mA ., 5 volt at 3 amps ., 6.3 volt at 4 amps. 6.3 volt at I amp. Open type construction. Price $45=$
T.R.F. COILS. Medium and long wave, aerial and H.F., $6 /=$ per pair ; with reaction winding, $6 / 9$ per pair.
BRENETTE MICROPHONES. We are sole distributors in Great Britain and Ireland of these new cell microphones. The following range is now available. Type 7D. Directional in black and chromed case. Price E4/13/6. Type 9ND. Muitidirectional ball type in black and chrome. Price £2/8/6. Type IIA. Wide frequency response, in brown and chrome. Price $£ 6 / 17 /$. Type 13 U . Hishly sensitive with wide frequency response, in black and chrome. Price $£ 7 / 17 / 6$. Trade Supplied
SILVER MICA OR CERAMIC CONDEN SERS (pFs), 2, 4, 5, 10, 15. 20, 22, 25, 30, 33, $47,50,75,100,160,200,220,300,330,470,500$ $1.000,2,000,4,000,4,500,4,700$. All at 5d. each or 4/- per doz.
POTENTIOMETERS. 20k, $10 \mathrm{w}, 10 \%$ by famous maker, Itin. spindle, price 3/6.
MICROPHONE STANDS. Desk type with flexible member to ease adjustment. TKese stands will suit all British and Continental microphones. Price 16/6 each.
RADAR REFLECTORS. Type $M \times 138 /-A$. These consist of $6-2 \mathrm{ft}$. x tin. dural tubes covered with fine wire mesh. The whole assembly can be used as an omni-directional aerial, and the mesh has many horticultural applications. Price $3 / 9$ each.
TYANA SOLDER GUNS. Weight 30 oz., for 220-250 v. A.C. mains only : consumption 100 watts. Transformer action giving Instantaneous Heat. Price 3 guineas.
TAMSA TYPE 100 TAPE RECORDING HEADS. Housed in chromium plated brass case on adjustable mounting. Record/playback heads have $\frac{1}{4}$-thou, gaps and erase heads have 2.5 thou. gaps. These heads are of high impedance Price 45- each Trade supplied.
GOODMANS OUTPUT TRANSFORMERS. 10 watts push-pull to match into 10,000 ohm., with two 3.75 ohm. secondaries for 3 or 15 ohm . speaker. Price 14/9.
ELECTROLYTIC CONDENSER OFFER. Tubular cardboard cased, with wire ends, 8 mid. 450 v. wkg., 525 v. surge, 2/- each

ALL GOODS NEW AND UNUSED (except where otherwise stated).
PLEASE ADD POST OR CARRIAGE ON ALL ITEMS. KINDLY PRINT NAME AND ADDRESS. POST ORDERS TO OUR DEPTFORD ADDRESS. EARLY CLOSING THURSDAY, OPEN ALL DAY SATURDAY.

SHOP HOURS: Mon: Tues: Wed: and Sat: 9a.m.-6p.m. Thurs: 9a.m.—1p.m. Fri: 9a.m.—7p.m. GARLAND BROS. LTD

TEL: TIDEWAY 44/2/3 TEL: LEE GREEN 4038

OUTSTANDING OFFERS FOR EXPORT ONLY

U.S.A. Radio and Radar Equipment

- AIRCRAFT TRANSMITTERS, Model GO-9 (Westinghouse) - RCA TRANSMITTERS. Type ET-4336-B, H, K, L.
- RADIO SETS SCR-695. RECEIVERS AR-77 and 88.
-TEST EQUIPMENT IE-46, TS-36AP, TS-56A/AP, TS-5I/APG-4,
Type 205A. Type LR-1 (General Radio), BC-221 (Bendix) AN/UPM - Hallicrafters SCR-299, 399 and 499 (BC-610).
- INTERROGATORS-RESPONSORS BM-I (and BN-I)
- REPEATER-INDICATORS AN APA-I.
- Radar indicating equipment, Model vf.
- Large Quantities of American Microwave Frequency Meters (Lavoie Laboratories).
- PULSE GENERATORS (RCA and Measurements Corporation).
- AIRCRAFT RADAR (complete units). APS-6.

AN/AFN RADIO ALTIMETER EQUIPMENT.

- TS-IOA/APN TEST EQUIPMENT FOR ABOVE

Spares (Radio and Radar-U.S.A.)
Full range of spares for most U.S. A. Aircraft, Nava! and Ground Radio and Radar Units (SCR-187, 188, 193/269, 274-N, 287, 399. 503-10, 17, 536, 566, 593, 608-10 (very large quantities), 694, 695, MRN-3, TRA-I-ABK. BM, BN, SM, SO, SQ, SK, APS-2, 3, 4, 6, 15, etc.). Klystrons 2 K 33 (Oxford tubes).
Large Quantities of Plate Supply Transformers for ET/4336 Transmitters.
-British T/R (X42. W/S No. 11. W/S No. 17, W/S No. 18 Mk. III, W S No. 38 , W/S No. 58 , W/S No. 68 -T).
Power Units, Wavemeters, Motor Generators, Dynamotors and large quantities of various components

- Aircraft Instruments and Accessories.

Catalogue supplied only to Governments, Airlines and Accredited Government Contractors.

Enquiries to

BRITISH SAROZAL LTD.

1 BRISTOL HOUSE, SOUTHAMPTON ROW, LONDON, W.C. 1 Jelephone : HOLborn 6763/4/5 Cabies Sarozal, London ALL EQUIPMENT AS ADVERTISED IS AVAILABLE FOR IMMEDIATE DELIVERY FROM STOCK AND IS FULLY CHECKED AND TESTED-PRIOR TO DESPATCH-IN OUR OWN WORKS AND LABORATORY, ARB OR AID CERTIFICATES CAN BE SUPPLIED UPON REQUEST.
We buy for cash American surplus equipment.

COLONIAL SERVICE SARAWAK

Vacancies
TELECOMMUNICATIONS ENGINEERS

Minimum Qualification Grad. I.E.E. or equivalent.

Pensionable Emoluments from $£ 1,000$ to $£ 1,750$ per annum Annual Increment £42

Apply by Airmail to :

POSTMASTER-GENERAL KUCHING
 SARAWAK

BARKER NATURAL SOUND GIVES SUPREME PLEASURE

No matter what your pickup, record, tape, amplifier, radio or other sources of entertainment may be, if they are really good your enjoyment will reach its peak when you add a Barker Sound Unit.

There are definite reasons for this fact The dual drive with its built-in cross-over and feedback gives full range beyond that of most twin combinations plus crystal clear definition, smoothness and freedom from irritating resonances or colourations.

That is why the most critical owners, musical and rechnical alike, choose and keep Barker Sound Units as their own Standard, If you have not yet heard one, make a point of boing so. Don't be put off or side-tracked. If you insist on Natural Sound, write to:-
Barker Sound Reproducers
3 Newman Yard, London, W.I

STEEP-CUTTING INFINIIELY variable

FILTEE

No other filter combines all the advantages of this model which are, briefly, to cut response above any desired level between 4,000 and 8,000 c.p.s. at an average steepness of 30 db . per octave. easy fixing (connects between 15 ohm speaker and amplifier output), robust construction, no distortion or appreciable loss of volume. Recommended for reducing surface noise on ' 78^{\prime} records, cutting ' edge ' on some L.P. records, and eliminating high-pitched interference on radio. Price $£ 4 / 10 / 0$. Leaflet on request.
E.M.G. handmade gramophones, Ltd 6, Newman St., Oxford St., W.l

Fidelia

After a summer day we can think of tew things more delightfial than to listen in the cool of the evewing to great music reproduced by line equipment. Naturally we think our reproduction is among the bust, but then our custorner friends thiuk so as well. The cost is very modest too. Full details and helpiul advice willingly on request

Fidelia Standard, 7 valve model £20 120 Fidelia Plus. 8 valve model £22 184
Fidelis de Lure, 9 valve model with 7 watt triode push-pull output stage.. $£ 23 \quad 6$ Techuical data slieets willingly sent on request.

Rate 7/- Ior 2 lines or less and $3 / 6$ for every additiona) hine or part thereot, average hines 6 words. Hox Numbars
 World" Dorset House, Stamford St., London, S.E.1.) Trade August 1953 issue, Thursday, Joly 2nd. No responsibility accepted for errors.

WARNING

Readers are warned that Government surplus cumponents which may be offered for sole through our columns carry no manufacturers guarantee: Many of these components will have unsuitable for or special purposes making unsuitable for civman use, or may have deteriorated as a we cannot which they have been stored.
any such components purchased.

NEW RECEIVERS AND AMPLIFIERS

 L_{170} quality amplifiers bass and 12 reble boost, $£ 12 / 15$: lists.-Broadcas \& Acoustic Equipment Co.. Ltd., TombiandNorwich.
[0065 C.J.R ELECTRICAL \& ELECTRONIC DEBirminirhament. Ltd.. Bickford Rd.. Witton Birminirham, 6 (Eas. 0435) the Midlands
specialist manufacturers of high fidelity sound swecialist manuiacturers of high tidelity sound Whllianson amplifier and associated accessories including tone control stages. loudspeake crossover units, distortionless contrast ex penders and radio feeders: send for details and rices

RECEIVERS, AMPLIFIERS-SURPLUS

 HEALLICRAFTERS SX28. excellent; £50.HRO Rx's and coils in stock. also AR88 11 BC348R. CR100, etc.-Requirements please to R.T. \& I. Service. 254. Grove Green Rd. SX28 15v receiver 43 overhauled, cream and c-550kc, recent! so Hartley ondon. W. 14 .-Box 7221 [1345 WILLIAMSON amplifier, \&18; two 1155 receivers, £5. £9; Avo valve tester, \&8 arious components. suit constructors; speaker HALLICRAFTER 26-valve dual diversity respeaker, amplifler. meters: $\$ 100$ or offer.Haley. 8. Woodhill Lane. Morecambe. Lancs.

LOUDSPEAKERS-SURPLUS AND

G OODMANS Axiom 80 loudspeaker, as new
£12/10.-Box 7519 (Kent). T WIN speaker system (2 W10/CS) in sand-cross-over network; £25 complete.-Cooper

TEST EQUIPMENT-SURPLUS AND SECONDHAND

GOR sale, surplus requirements, Cossor model No. 1035 double-beam oscillograph - -Box
[9990. FOR sale, Avometer, model 7 , condition as Burgh Heath, Tadworth, surrey. Tel. Burgh Heath 5767. $[1420$ B Telecere miniature osciloscope and cither or $£ 30$ both.-Pilling, 397, Whalley New Rd.. Blackburn.
1 SIGNAL generator, BC 3669 , 1 multi for sale atso various valves.-Kenneth Lonr \& Cor. Ltd. Bevois House. 27/30. Basinghalt St.
London. E.C.2. Tel. Monarch 5626 . 11403 SIGNAL generators, oscilloscopes, outpu1 multi-range miters in stock: your enquiries are Grove Green Rd.. London, E.11. Ley. 4986

NEW DYNAMOS, MOTORS. ETG.

BATTERY chargers, 4 models. $2-6-12 v, 1-2-4$ types special transformers. chokes, test gear, interior car heaters. etc.-Th
A to types of rotating electrical machinery up verters. rotary transformers, motors. patrol and diesel-engined generating plants alternators and d.c. generators. We are aso in a position to quote for power translormers; as actual quantify for home or export. DIESEL Electric generatin q plants. 3gva, $230 v$ equipment, ready for use; $£ 240$.
CHAS. F. WARD, Lordscroft Works, Haverm:
Sutig. Tel, 253 .
[0039

THE long untiring research behind grain oriented stripwound ' C ' core transformers brought its reward in the production of an audio transformer with a performance hitherto found only in the specialist laboratory. To consistently maintain that " lab performance " in production models implies the finest possible materials in the hands of highly skilled workers. Little wonder that Partridge lead the way with their type C.F.B. These figures tell their own story: Series leakage induct 10 mH . ; Coupling between primaries-leakage induct. for one half (other shorted) 30 mH ; D.C. resist. per half primary 88 ohms ; Power up to 60 w . from $22 \mathrm{c} / \mathrm{s}$ to $30 \mathrm{Kc} / \mathrm{s}$; distortion less than 1 per cent. with no negative feed back!
Fullest technical data on request.

ROEBUCK ROAD, KINGSTON BY-PASS TOLWORTH
Telephone
ELMbridge 6737-8

NEW DYNAMOS, MOTORS, ETC.

TTOV on welded stel frame. $230 / 1 / 503 \mathrm{kva}$ plus diesel enin. petters hateself-eners air-cooled natic volte. altemator. senfenergized. auto matic voltage control by winding on stator, at
govern, speed
1.500
rom
d.c. output trickle charges or charges lighting and starter battery up to $15 a \mathrm{mps}$. 24 y lifhting is used when plant is not in use; start and stop by remote control push-button: complete with main switch and fuses, battery cables $24 \mathrm{v} 72 \mathrm{amp} / \mathrm{hr}$ batt. instruction book, spares: engine covered by Petters inspection service; reduced price
free delivery; where remote start and ston not required. but only push start on plant, reduction of $£ 6 / 10$: a few from stock. others quick delivery:
if you collect, or we deliver battery is charged and a 10 cu ft concrete bed given free. SEND p.c. for full description and photographs. ALSO above plant fitted Lister slow-speed water cooled diesel and electric tywheels. self-ener gized, $3,000 \mathrm{rpm}$. ball bearing. $£ 23 / 15$ del.: also special television model same price: voltage regulator $30 /-$ extra.
J.A.P. No, EA 1.2 hD petrol engine. air cooled. 4 -stroke, starting rune tools. £17/lu del. interference free, fitied radio and television filter wt. 601 b d.c. input. 12 y 200 va out. 24 y , $50 \mathrm{v}, 110 \mathrm{v}, 230 \mathrm{v}$ d.c. to 230 v out. 250 va £ 277 IO del.: also converters for radiogram and general use, inputs. outputs and prices as above: the del. immediate despatch: trade supplied. del.. immediate despatch: trade supplied. Coldfield. a 24 v . TELEVISION converter was tested on 135 television. 12 in tube. Stated consumptamps. Dicture d.c. current from battery only g1, amps. Dicture and sound wor flutter. THE above are the latest products of British fullest details of plant. alternators or 400 VA alt. or rotary converters. by return post; state which required: terms c.w.o.. pro forma invoice c.o.d. T. W. PEARCE. 66. Great Percy st., W.C. 1 (near Angel)
DYNAMOS. MOTORS. ETC.-SURPLUS AND SECONDHAND
\lceil ply as mupplied to the Bict mains supChorehorse A.C./D.C. petrol electric genera$\begin{array}{ll}\text { tors. } \\ \text { self-starting. } \\ \text { A. } & \text { voltag-contained. compact. } \\ 220 / 250 . & 50 / 60 \\ \text { cycles. } & 25\end{array}$ $\begin{array}{ll}\text { A.C. } & \text { voltage } 220 / 250 \text {. } 50 / 60 \text { cycles. } 25 \\ 0 / 350 & \text { watts: will also run radios. vacuum }\end{array}$ cleaners. small tools. etc.: D.C. output wilt charge batteries for permanent lighting.
STORAGE batteries. finest possible soecification, dry. uncharked. 12 v 75 a h. heavy duty. 19 plates. separate cells. in price $£ 7 / 17 / 6$ plus 976 delivery.
$6 V_{0}$ a.h.' 15 plate hard ruber cells. also
suitable for cars, tractors, lorries; price $£ 3 / 7 / 6$ plus $7 / 6$ delivery. TED High St.. Teddington Middx. ${ }^{\text {Led.. }}$ NEW GRAMOPHONE AND SOUND EQUIPMENT
$\mathbf{R}^{\text {ECORDING equipment to the trade. }}$
WEARITE tape decks and special parts. disc recording machines
BLANK discs Scotch-bov tape. Emitape.
RADIO feeder units. microphones. etc
ALL from stock.-Sound Discs (Supplies). Ltd. 178. Bispham Rd.. Southport. Lancs. $\lceil 1087$ TAPE recorder motors. 230 v . a.c., powerful, K. W. Logan, Westalley. Hitchin. Herts., 0232 FREQUENCY modulation, feeder units and Fe kits. £11/17/6. £7/5. also coll sets $75 /-1$ Products. 10, Marlboroukh Yd.. Archway. N 10
C.J.R. ELECTRICAL \& ELECTRONIC DE C VELOPMENT, Itd., manufacturers of high quality portable and console magnetic tape re-
corders
for professtonal and amateur use: full detalls on application,
BICKFORD Rd., Wition. Birmingham. 6. Fast 0822
CINE-VOX disc recording equipments, type ing microphone equipment, price from 28kns also available as a complete channel inclusive of mic.. amplifier and playback equipment, at
70 ans: type C . for highest quality professional requirements-recorder mechanism at 48gns. or complete channel at liogns: demonstrations PLEASE write for details to K.T.S., Ltd. 60 , Aylward Rd... London. S.W. 20 (Liberty 2426. .)
Callers by appointment only,
$[0209$

> FOR SALE AND WANTED ADVERTISEMENT FORM TURN TO PAGE NO. 119.

OHYX

miniature soldering instrument
Heats up in 30 seconds

- "Pin point " heat
- "Finger control" soldering
- Can be left switched-on
all day
- Interchangeable push-on bits

For 6, 12 or 24 volts- 8 watts
Length : $6^{\prime \prime}$ Weight: $\frac{1}{2}$ oz

(1) I X

Electrical Laboratories

Sole Distributors
ANTEX LTD.
3, TOWER HILL, LONDON.E.C.3. Telephone: ROY 4439

AMERICAN SURPLUS

- RECEIVERS. BC.639. BC.638, BC.529, BC. $603, \mathrm{BC.312}$. BC.470, BC.973, BC. 1003 , BC.728, $602 A$, etc.
- POWER SUPPLIES. RA.34, RA.62, RA.37, RA. 87, RA. 9 I, RA. 36, PE. 95, PE.206, RA. 38 , BD.77, PE.103, RA.42, TCS.6, etc.
- TEST EQUIPMENT. $1.83,1.56,1.36$, 1.122, 1.61, 1.51, LM, LZ, 1.193, 1.176, 1.205, OAP/I, 1.85, 1.199, BC.949, etc.
AERIAL EQUIPMENT. MS. 49 to MS. 54 , MT.7, TBY, Trylon Lattice Tower, MP.44A, YG, AN/TPX, AN.105. A.62, MP.48, etc.
- INSULATORS. Por., Strain, Spreader Lead-in, Suspension by Locke, Hemingray, Pyrex, also brackets and fittings, etc.
- FUSES. E.S.: Glass and Cartridge by Pyrex Major, Buss, Littel, etc., up to 600 amps .
- TRANSFORMERS AND CHOKES, by Amertran Kenyon, Stancor up to 3 kW . Amertan KREnyon, Stancor up to ${ }^{\text {to }} \mathrm{k}$.
- TELEPHONE AND TELEGRAPH GEAR RM.12, RM.13, RM.6, RM.29, TG.5, TG. 10 BC. IO16, etc.
- TRANSMITTING

EQUIPMENT. Wilcox, Collins, Hallicraf́ter, Bendix.

- BRITISH APPARATUS includes TRANSMITTING COMPONENTS up to 10 kW ., High Power Triple Diversity RECEIVERS R. 201 , DST- 100 , Standard Racks, 5 ft . 6 in . and 3 ft . high, Carrier Telegraph and Telephone Equipment.
Many other items too numerous to mention. Send your requirements. Lists available. Packing and Shipping facilities.

H. HINHIS
 ORGANFORD
 Tolephone: Lychett Minster 212

NEW GRAMOPHONE AND SOUND

\mathbf{M}^{A} AGNETIC recorders, all types, new and greater London area only: mechanical and eiectronic repairs carried out mechanical and electronic repairs carried out by specialists: "Magall types of recorders, 25/-ick-ups, suitable stol for 12 reels, $37 / 6: \mathrm{B}, \& \mathrm{H}$, recording wire, new and used. from $15 /-$ reel; tape. accessories, etc. full detaits, s.a.e. The Magnegraph Recording | Co., Ltd.. 1 , Hanway Flace. W.1. Tel. Lang- |
| :--- |
| ham |
| 156. | Wearite tape decks 2A. £35: super 12 output trans.-pull ampliniers to suit (Partridge output trans.) frea. res. 20-20,000c/s, miniature valves. m . eye level ind. response fron watts model, \&25; quality $41 /$ watts (EL41) iunior. with' meter level ind. 'phone monitoring. minature valves, 2lens: amps to suit Bradmatic. £30; 1or Truvox. Lane, M. Master Motek. etc. 18 gns 9 watts. p - pull, or built to order: all tape desss supvied. prompt de London. N.W.2. Electronics. 120a. Mora Rd. ondon. N.W. Γ WO E.M.I. type 12 (long arm) P/Us. with endermer, V.E.c.. \&5: four Presto cutter 606 . 1 C (vertical fitting), £5 each.-B0x M.S.S. portable disc recorder. list $£ 80$ - £45: Ferrograph tape recorder, £65; Goodsell amplifier and T/C prestage, $£ 18$; all as

new.-B0x 7132 .
PREMIER de luxe portable tape recorder P (advertised at 39 gas). complete, perfect: 341\%gns, demonstrations arranged.-5, Cromwell Rd, N. Fin. 5027. horn, Lowther tuner, perfect order: ${ }^{2} 60$ or near off, etc., in cabinet, Ravenscroft Rd., Beckenham. Kent. [1371 H.M.V. portable disc recorder, model 2300 H, match (using Wertect, special tape recorder to discs; complete equipment $£ 150$.-Novatron Instruments, Ltd., 116, Hornsey Rd., Holloway N.7. North 2083. [1342

COMPLETE M.S.S. Disk recording equipment, amp, mic preamp. R.G.D. tuner with P/U preamp and preamp power unit; two C.L.E.D. 78 rpm turntables, with Rotacols and new P100 TRANSPORTaBLe
T RANSPORTABLE public address or disc reP.P.) amplifiers. pre-amp mixer, modt (PX25 playback turntab:e. 12 in loualspeaker. cable box mains dis board, iunction box recently overhauled, in 9 wooden cases; cosi $\& 400$ i over $£ 60$ secures.-Box 7534 .

NEW COMPONENTS

SWIFT RADIO.- Send for our free component tc.-21. Hibbert Rd.. Harrow.er, tape, gram. $\Gamma \mathrm{V}$ convertor, May issue " W/World stocked.-Bel. sound free most TV coll sets stocked.-Bel Sound Products. 10, Marlborouch
Yd., Archway. N.19. CRYSTAL microphone inserts (Cosmocord free: Mic-6) Ruaranteed brand new $15 / 6$ post phones. black or white. £4/4 each. micro-- Radio-Aid. Ltd. (Retail Dett.) 29 . Markei St., Watford.

10036
MALDEN TRANSFORMER SUPPLIES offer w/w pots $6 / 6$; $2 \mathrm{mfd} 3,000 \mathrm{v}$ paper cosdenser 5/9; metal rects., $12 \mathrm{v} 2 \mathrm{amp} F / \mathrm{w}$. 8/9: 80w fluorescent choke, 230 v , with starter lamp. 14/6: battery charging transformers, 10 v 18 v at

$\mathrm{F}^{\text {OR really good results you can do no better }}$ anyone of experience! Send 5d (stamps) today for beautifulty-drawn free circuits stamps) today data leaflets, and latest lists of matched radio components. A speedy mail order department is at your service, and remember, all Osmor lines are guaranteed. (Trade enquiries invited.) Dept. OSMORR RADIO PRODUCTS. Ltd. Aridge View 5148-9.

COMPONENTS-SURPLUS AND

L ARGE stocks of ex-Govt. radio equipment to S EE our displayed advt. on page 96 for surMAGSLIPS at $1 / 10$ to $1 / 20$ of list prices, | K. huge stocks, Dlease state reguirements. |
| :--- |
| \mathbf{K}. LOGAN, Westalley, Hitchin, Herts. |
| 10233 | CI'A. RYALL, " Utopia," Mayfield Rd., new and unused, switches, Yaxley type, 2B, SP. o-way double spaced, no stop, $1 / 4$ each; smaller type $3 B, 2 \mathrm{~F}$, 6 -way, total five poles only, $2 / 4$; new type, with soldered lags, taken from brand now contro baxes, 2 B , 4-way, with total five locknut, boxes of 10 for $2 / 9$ or ten ceramic with to clear; radio mains suppressors with feet and removable screw lid, 6/9 each; sliding resistances on stand, $25 a \mathrm{mps} 0.40 \mathrm{hm}$, wound in parallel and can be $0.80 h m$ with slightest alteration. $10 /$ Fi

or
Bakelite resistor panels,
deway, for
1 watt best offer, and $50 /$ gross high voltage and var-
nished sleeving, $3 / 31 / 2 / 4 \mathrm{~mm}$, best oiter.
[0205

оге ,

Get this FREE Book!
'ENGINEERING OPPORTUNITIES' reveals how you can become techaically qualified at home for a highly paid key-appointment in the vast Radio and Tele vision Industry, In 144 pages of intensely interesting matter, it inciudes full details of our up-to-the-minute home study courses in all branches of TELEVISION and RADIO, A.M. Brit I.R.E., City \& Guilds, Special Television, Servicing, Sound Film Projection, Short Wave, High Frequency and General Wireless Courses.

We definitely Guarantee

"NO PASS-NO FEE"

If you're earnung less than 615 a week this enlightening book is for you. Write for your copy today. It
without obligation.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 388b SHAKESPEARE HOUSE. 17, 19 STRATFORD PLACE, LONDON,W1

THE "FLUXITE QUINS" AT WORK "i's needing some FLC'XITE I'll say The nerial's unsound.
 See that FLUXITE SOLDERING PASTE is always by you-in the house-garage-workshop-wherever sneedy soldering is needed. Used for over 40 years in Government works and by leading engineers and manufacturers. Of all Ironmongers-in tins from 1/- upwards.

TO CYCLISTS. For stronger wheels that will remain round and true, here's a time tested tip. Tie the spokes where they cross with fine wire FLUXITE - but IMPORTANT

FLUXITE

SOLDERING PASTE
A Staunch Companion to Fluxite Soldering Fluid.
SIMPLIFIES ALL SOLDERING
 for lenflefs on CASEHARDENNJVG STEEL and
TEMPERSV TOOLS with FLUXITE FLUXITE LTD.
BERMONDSEY STREET, LONDON, S.E.1.

OVER 1500 PAGES enhanced by extensive references, this new edition covers everv aspect ofradio reception, audio and record reproduction.
Over 280,000 of previous edition sold. This new, greatly enlarged edition is in great demand, Be sure of your
copy of this most comprehensive reference book for Order now!

RADIO
DESIGNER'S
HANDBOOK
"The Gramophone" AMPLIFIER
Speaks for Itself—so does a user! "I have delayed acknowledging the safe receipt of parts for "The Gramophone" Amplifier unril I had completed and subjected it to tests. I am immensely delighred with its performance, far superior to others I have tried costing far more than the present equipment. I only hope that many other readers, . will come to realise the same as myself-ihat your advertisement regarding the superlative performance of this amplifier is fully justified.
Thank you, sir, too! No need for sales talk
or picture from us.
The Amplifier 17 gns .
Pre-amplifier for Magnetic p.u. 5 gns.
Control Unit for Crystal p,u. 45/-,
 0. 1 per cent harnonic at 5 w, $20 \cdot 21,000$ c.p.s.e. $3 / 15$ ohm ont-
 HOME CONSTRUTHimble circuit.
part asseminted group hoarls with resistors and capacitors

(3)PRESSURE TYPE TWEETER UNIT
All-aluminium, M / C., former and diaphragm at rear of 14,000 gauss magnet, centre pole shaped to commence horn. 15 or 30 ohm. Response $2-14 \mathrm{Kc} / \mathrm{s}$. $75 / 6$.
Suitable $3 \mathrm{Kc} / \mathrm{s}$ and X-over network $26 / 6$. This unit and X-over combined
within neat walnut veneered cabinet in the
Q.M. QUALITYCUBE

Ggns.
The clean extended treble response added to existing speakers of $10-18 i n s$. gives increased realism out of all proportion to modest cost.
The W.B. range includes models of all popular sizes. We also stock a special 18in. model of exceptionsl performanee.

New Decca LP Pickup

Better quality, less record wear with the new "H" head interchangeable with earlier Decca magnetic heads
H.F. response raised to $14 \mathrm{kc} / \mathrm{s} .3$ grams lighter. Not widely available, but we have a fair stock. 1,600 ohm replaces " C " or Decola, Leak, etc.
Decola, Leak, etc.
Head only with sapphire, $54 / 9$; with diamond, K6/18/-
XMS pick-up " H " and 78 heads, £6/9/6.

Collaro

1953 Turntable Units and Auto-Changers
A new range combining popular price with merits usually found only in more expensive transcription equipment. Heavy turntables with smooth 3 -speed drive giving negligible rumble,
a turnover crystal pickup with unusual range tracking at low pressure on the most difficult microgroove record, fully tropicalised, hand-
some cream enamel units bespeaking confidence some crearn enamel units bespeal
Seamped addressed envelope brings full specifica-
fion, prices and extended payment terms.
Quality Mart
8, Dartmouth Park Avenue, London, N.W.5.
Order by Mail-Demonstrations by Appointment.

$$
4
$$

COMPONENTS-SURPLUS AND SECONDHAND

R $R_{\text {COU }}^{\text {ADI }}$ Curt Rd., London, w. 1 . Tel. Museum 9188 . of mounting, price post paid, in that order: $400,6 \mathrm{v}, 1 \times 2 \mathrm{in}$, lug, $2 / 3 ; 250+250,6 \mathrm{~V}, 1 \times 2 \mathrm{in} ;$

 2/6: $16+16,450 \mathrm{v}, 11 / 3 \times 2 \mathrm{in}$, clip, $4 /-41 / 40+40$.
$275 \mathrm{v}, 1 \mathrm{in}, \mathrm{clip}$, $\begin{array}{lll}2 \mathrm{in} . & \text { clip. } & 5 / 6 ; 24+24+16,350 / 425 \mathrm{v}, 1 \mathrm{v} / \mathrm{m} \times 2 \mathrm{in} . \\ \text { clip, } & 4 / 9: & 60+200,275 / 350 \mathrm{v} .1 / 4 \times 4 / \mathrm{in} \\ 6 / 6: & 1,000,\end{array}$

 $4 \times 2 i n ;$
lug, $5 / 6 ;$ all are ali cans, some with sleeves
ALL new stock WKG with sulse TELEVISION! Set of 3 components, comprising line output trans., with E.H.T. Winding to give 7 kV , using EY5l (heater winding for EY51 aiso included), and fitted with width control scananig colls, low impedance line and frame, focus the set of 3 for 42% plus $2 /=$ post, dia mA line trans. supplied. 3 valve T.R.F. using IT4s, contained in handsome bakelite case with lift-up lid, size $7 \times 61 / 2 \times 5 i n$ with lid closed, plaste carrying handle, fram. AE in lid, these receiveis cover the medium waveband and operate from
self-contained dry batts., standard W1435 and U2, output to a pair of lightweight ${ }^{\text {p }}$ phones (H.R.) controls. SM tuning and reaction, opening lid switches on, supplied brand new, with valves, batteries, "phones, an ideal set for invalids hosp, patients, etc., these receivers are not Govt. surplus and are offered
ieady to play; carr. paid; $£ 4 / 10$. RADIO CLEAVRANCE. Ltd., 27 , Tottenham Court SUPREME RADIO T46B, Romford Rd. Manor - Park. London, E.12. Tel. IIf. 1260. Est. 17

ALWAYS Supreme for good quality components at the right price: $10 H Y$. 100 ma L.F. chokes: HEATER trans.. primary $0-250 \mathrm{v}$, sec. 6.3 v at IF/TS 465 kcs . in small pli. can. 21 in $1 \times$ each dia., with dust cores; look at the price, $6 / 6$ VERY popular line: Mains trans., by Parneko, universal fixing, primary tapped. o-200-220240 v , sec. $290-0-290 \mathrm{v}$, 80 ma , 6.3 v , 3amp and.
6.3 v . tapped at 4 v 2amp, with screen; our price. 15/11 inc. post and packing. with long soindle and \dot{D} / P switch. Imeg or $1 / m \mathrm{meg}$, cannot repeat at $3 /-$ each; $\mathbf{P} . \mathrm{M}_{1}$ speakers all less trans. $2-3 \mathrm{~V} /$ coil. $5 \mathrm{in} 10 / 6$. 61 in $12 / 11$
earch. 8 in $13 / 11$ each. 10 in $18 / 11$ esch. each. 8 in $13 / 11$ each. $10 i n 18 / 11$ each.
THE famous Goodmans $10 \mathrm{in} \mathrm{P.M} .\mathrm{Still} \mathrm{in} \mathrm{stock}$, THE famous Goodmans $10 i n$ P.M. still in stock,
$2-30 h m$ v/coil, less trans., at the very keen price of $22 / 6$ each. condensers: Metal can type $32+32+16 \mathrm{mfd}, 350 \mathrm{v}, 3 / 6$ each: $60+150 \mathrm{mfd}$ 275 v d.c. wkg., $4 / 11$ each: $200+200 \mathrm{mfd}, 25 \mathrm{v}$. $1 /-$ each: $16+8 \mathrm{mfd} .450 \mathrm{v}, 4 / 9$ each; $16+16 \mathrm{mfc}$.
$450 \mathrm{v}, 4 / 11$ each; tub, cardboard con., $8 \mathrm{mfd}, 500 \mathrm{v}$ wire end, small. $2 / 9$ each: $100 \mathrm{mfd}, 12 v$ tub/ cardboard w/end bias cond. $1 / 6$ each mead listed are brand new stocks). TWIN balanced feeder, 80ohm. for television: T.R.F. coils with circuit for M / W and $L /$ wave. 6/- pair- vitreous enamelled droppers, with slider, 8000hms. 4/-each. 28-WAY tar strd, break it as required, 1/- each. TERMS: C.W.O.. no c.o.d." send 9d extra for postage orders under $£ 5.21 / 2 \mathrm{~d}$ s.a.e. all enquiries MIDGET portable radios, A.C./D.C. twobrown plastic, work anywhere without external maker's guarantee. d6/9/6. battery ditto: all dry inc batts.. £6/9/6: trade enouiries invited CV571. CV2500. CV562. CVI988, CV1863. 807
 CVI103, CV785. CVBB5, 6N7, 12SC7, OZ4, 6/6: guaranteed: post 6d each; no c.o.d. under $£ 1$. Radio Facilities, Ltd., 38, Chalcot Rd., N.W.1.
Prdmrose 9090.

For

SUCCESSFUL wide-angle scanning ALLEN deflector coils

70° Scan with minimum deflection defocussing.

High-efficiency castellated "FERROXCUBE" core.

Suits any Wide Angle C.R.T. up to $27^{\prime \prime}$ double (d) Scan.

LARGE SCREEN TELEVISION

Can only be achieved by using high efficiency components throughout. ALLENS can supply the complete range.

For prices and details of the full range of ALLEN components

For circuit diagram of Line and Time Base Send 9d. and S.A.E. to :-

ALLEN

COMPONENTS LTD
Crown Works, 197 Lower Richmond Road, Richmond, Surrey

Telephone: Prospect 9013

FOR CATHODE RAY TUBE FAILURES

Special low capacity secondary winding for Heater/Cathode shorts to restore picture after this fault has occurred. All Primaries tapped, framed and tag panelled, 200/250. 2 v. at 2 a., 4 v . at 2 a.,
, 6.3 v.at $2 \mathrm{a} ., 10.8 \mathrm{v}$. at 0.3 a ., at $29 / 6$ each.
For any other voltage, send particulars of voltage and current required. Trade discount to genuine retailers and service men for above only.
T.V. HEATER TRANSFORMER, 200/250. 6.3 v . at 7 a.-0.2-6.3 v. at 2 a ., at $19 / 6$.
T.V. AUTO TRANSFORMER. $0-190-210-$ $230-240$ v. 6.3 v . at 7 a. $-0-2-6.3 \mathrm{v}$. at 2 a ., at $27 / 6$.
T.V. FRAME TRANSFORMER. 60 H . magnetic deflection suitable for most home-constructed sets, at 15/6.

MAINS TRANSFORMER. 200/250, $425 / 0 / 425200 \mathrm{~m} / \mathrm{A} .6 .3 \mathrm{v}$. at 4 a. C.T., 6.3 v , at 4 a . C.T., 5 v . at 3 a . Fully shrouded, at 50/- each.

We will quote for quantities of any type of Mains and O.P. Transformers and Chokes to manufacturers of electronic equipment, or wholesalers and exporters.

HORTHERN TRANSFORMER CO.

215 BARKEREND ROAD, BRADFORD, YORKS.

Solons save time, reduce costs. Solon soldering is always clean, reliable and simple. Five models, in voltage range 100-250; each with 6 feet Henley flexible. 65 watt; oval tapered or round pencil bits. 125 watt ; oval tapered or round pencil bits. 240 watts; oval tapered bit.

Write for Folder Y. 10
W.T. HENLEY'S Toleg raph Works Co. Ltd $51-53$ Hatton Garden, Loddon, E.C. 1

COMPONENTS-SURPLUS AND
SECONDHAND
SOUTHERN RADIOSUPPLY, Ltd. 11. Little
Newport Street, London, W.C.2. See our
displayed advertisement, page 108. GOVERNMENT and manufacturer's surplus Colines, radio, electrical. etc, lists free to Sellers St., Sheffield, 8.
. Tel. Bardwell 52886 © Co.
$\lceil 1433$ TV formers, 4BA wrenches. 7mes IFI, 6d, $7 /-P F, 10 \mathrm{H}, 250 \mathrm{ma}, 10 / 6 \mathrm{~F} ., \mathrm{tran} \mathrm{H}$. 1083 , less valves, coils, $25 /-$ PF, MW Welfare batt, lecv $50 /-$ PF; free Iists. A Annakin. 25, Ashfield Place, Otley, Yorks.
SPECLAL valves, type 807 , brand new. $7 / 9$ each: W type 196 unit, brand new, less valves. $22 / 6$; mains trans... $350-0-350.6 \mathrm{~V}, 5 \mathrm{~V} .4 \mathrm{~V}, 4 \mathrm{~V}, 80 \mathrm{ma}$:
$19 / 6$; Wey-Rad 465 kcs I.F. trans., $8 / 3$ pair: midget $465 \mathrm{kcs}, 9 / 6$ pair; joudspeakers, $31 / 2$ in.
$11 / 6 ; 5 i n, 11 / 6$. $6 i n, 12 / 6$; $10 \mathrm{in}, 19 / 6$; fil, trans. 6.3 V at 1.5 mp . $5 / 9$; netal recs., RM1. 4/6: RM2. 4/9: RM4. 15/6; v/controls, semi-midget all values, $3 /-; \mathrm{SP} / \mathrm{SW}, 4 / 6 ; \mathrm{DP} / \mathrm{sw}, 5 / 6 ;$ electrolytics, $450 \mathrm{Vw}, 8 \mathrm{mfd}, 1 / 3 ; 16 \mathrm{mfd}, 2 / 6 ; 8 \times 16,3 / 6$;
$16 \times 16.4 / 3: 32 \times 32,4 / 9 ; 500 \mathrm{vw}$ card tub .8 mfd. $2 / 6: 16 \mathrm{mfd}, 3 /-8 \times 16,3 / 9: 32 \mathrm{mfd} 3 / 9$; stock list available.-Radio Ünlimited. Elm Rd, Lon- Lon-
don, E.17. Key. 4813 . CABINETS
Walnut radiogram cabinets; details. WalNUT radiogram and television cabinets,
soundly constructed: stamp details.- R. Shaw, 69. Farrlop Rd.. Leytonstone. E. 11 「9591
GOODMANS corner reflex cabinets supplied, E radio. gramovhone, record and bass rellex cabinets made to order: rexine covered record
player cases from $50 /$; bass reflex cabinet kits player cases from $50 /-$ - bass reflex cabinet kits
from $80 /-$ call or write: open till $5.30 \mathrm{D} . \mathrm{m}$. Srom 80/-: call or write: open the 5.30 A. DAVIES \& CO. Cabinet Makers, 3. Parkhill
Place, off Parkhill Rd.. London. N.W.3. Gulliver 5775.
NORWOOD TECHNICAL COLLEGE.
TRAINING in radio. radar, television and electronics. GAY Brit.I.R.E. City and Guilds Examinations, P.M.G. Certificate. R.T.E.B. Radio and Television Servicing Certificates.
ALso special courses in radar, television. electionics (instrumentation) day classes: Free LONDON fees for full-time day classes; Free if 18 vears or over.
FURTHER particulars from Secretary. Norwood Technical College. West Norwood, London S.E.27. (374) 11085 COUNTY BOROUGH OF BOLTON-Education COLION Technical College.
AOLTON Technical College. A THREE-YEAR full-time course in Eiectronic APPLICANTS should be in the age range 16 to Certificate (Ordinary Level) in Mathematics or Phystcs, or equivalent courses in technical instirutions.
THIS rapidiy developing industry offers new and attraciuve openings to qualified men. APPLICATION forms and particulars may be obtained from the Principal. Technical College.
Bolton. Lancs. Education Offices,
Nelson Square. Bolton.
「9855
WANTED.

BC610 Hallicrafters, also spares; RCA ET 4336 series with spares, BC348 receivers. also TCS6 TCSL 2 and components. GRG GROUP Ltd 46 | McELROY ADAMS MFG. GROUP. Ltd. |
| :--- |
| Greyhound Rd. 6. Tel. Fulham isis-9. |
| 194 | $45 /$ each offered for 813 type valves.-Write

LEAK high-fidelity racio and amplifier or HIGH-QUALITY 3ohm 10 -watt loudspeaker 11-1 required in cabinet.-Box 7694 . $\quad 11436$
WANTED, receivers A.P.R.4, aiso T.N. 16. 17 W 18. 19 , etc., and any radio test gear. LESLIE DIXON \& Co.. 214 . Queenstown Rd.
Battersea, S.W.8. Macaulay 2159 . WANTED, RCA 4331 transmitters.-P.C.A. W.6. Tel. Riverside 3279 Grove. Hamnersmith.
10093 BULK quantities urgentig wanted for export ment of every description.-Box 6880 . 11038 WANTED, HRO coils, Rxs, etc. A.R.88s. Service. 254. Grove Green Rd.. London. E. 11
Ley. 4986.
WANTED, laboratory test equipment, includoscilloscope. bridges, recorders; send price and details to: HATFIELD INSTRUMENTS. 175 . Uxbridge Rd.
Hanwell. W.7. Tel. Ealing 0779. W ANTED, RCA speech ambliflers type BC 939a. Hallicrafters speech amplifiers BC 614: offers statink duantity and price to-
PCA Radio, The Arches. Cambride PCA Radio, The Arches. Cambridge Grove.

$R \Omega M$

I.F. ALIGNER KIT 15^{\prime}.

Provides a modulated signal, basic frequency $465 \mathrm{kc} / \mathrm{s}$., tunable above and below for other I.F. frequencies in this range, and is pre-tuned ready for use.
Robust construction in compact welded steel box 4 in . $x 4 \mathrm{in}$. $\times 3 \mathrm{im}$. Light, fully portable, operating from single "U2" 1.5 volt dry cell. All metal parts are ready drilled for easy assembly from full instructions and diagrams.
Post \& packing 1/-. Cash with order or C.O.D.

Both these Kits are COMPLETE.
No Valves to Buy.

RES./CAP. BRIDGE KIT 316

5 Megohms- 50,000 ohms.	$50 \mathrm{mfd}-.2 \mathrm{mid}$.
100,000 ohms $-1,000$ ohms.	$1 \mathrm{mfd}-.01 \mathrm{mfd}$.

NO CALIBRATING

Six fully variable ranges, separately scaled for direct reading. Full inseructions and diagrams for easy assembly.
Post \& packing 1/6. Cash with order or CO.D.

RADIO MAIL

4, RALEIGH STREET, NOTTINGHAM

Stamp with all enquiries, please.

RECORD PLAYEIf

$110-250 \mathrm{v} . \mathrm{A} . C$
$78-33 \frac{1}{3} \mathrm{r} . \mathrm{p} . \mathrm{m}$.
Dual
Purpose
Sapphire
Stylus

5-6Kv. E.H.T. TRANSFORMER

With
U22 RECTIFIER $37^{\prime} 6$
P. \& P. 2/6.

MOTORS
$110-250 \mathrm{v}$
A.C.-D.
3.
3.000 r.p.m.
$\frac{1}{17} h . p$.
Size $6 \times 3 \frac{1^{\prime \prime}}{}$
Spindle $5 / 16 \times 1$ long, Ex G.P.O.
Ideal for 101 uses. Price $27 / 6$ P. \downarrow P. 2/-
WIRE \& CABLE STRIPPERS ${ }^{\mathrm{By} \text { Famoos }}$
Usual Price 15/-. Our Price $5 / \mathbf{G}$
Hundreds of Barrains in Radio-T.V. Components.

SPECIAL PURPOSE VALVES
EF8, 6/6; 954, 2/: $955,4 / 9 ; 956,3 / 6$; VUill, $3 / 6$; VUI20A, $3 / 6$; 6G6G, 6/6; 6A6,8/- ; VÚ133, 3/6; CV7I, 1/-; TTII, 6/6; $9001,6 / 3 ; 9002,6 / 3 ; 9003,6 / 3 ; 9004,6 / 3$; 9006, 6/3; VR137, 5/-; VR116, 4/-; 2×2, 5/6; 6A3, 5/-; 6B5, 5/-; 6F7, 5/-; 6SF7 VU39, 8/6; VR53, 7/6; VRI36, 7/-; VR55, 7/3; VR56, 7/-; VR65. 3/9; VR65A, 3/6; VR91, 6-; VR9I Sylvania, $7 / 6$.
EX GOVERNMENT VOLUME CON. TROLS
TROLS $500 \Omega, 600 \Omega, 10 \mathrm{~K} \Omega, 5 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega, 50 \mathrm{~K} \Omega$ 2 MEG Ω, $\frac{1}{4}$ MEG 2 . $\frac{1}{2}$ MEGS). Double 1500Ω one spindle. Double $25 \mathrm{~K} \Omega$ one spindle Double 50ks one spindle. All $1 /$ each
LOUDSPEAKERS
Plessey 3in. Round Type for
 Elac 5 in Round Type
Lectrona Sin. Latest type
Goodmans 5in. Round Type, 2 to 3
Goodmans 6tin. L'wt., 2 to 3 ohm Elac $6 \frac{1}{2}$ in. Type $6 / 19,2$ to 3 ohm . Elac $6 \frac{1}{2}$ in. Type $6 / 19,2$ to 0 ohm ...
put Transformer
Truvox $6 \frac{1}{2}$ in. Wafer, I in deep
Plessey 8 in . Lightweight, 2 to 3 ohm Elac Bin. Type 8/37, 2 to 3 ohm
Lectrona 8in.
Rola Bin
Plessey 10 in . L'wt. 2 to 3 ohm
Rola 10 in . 2 to 3 ohm
Lectrona 10 in .
Truvox 12 in . BXII L'wt., 2 to 3
Truvox 12 in . Heavy Duty Model. 15 ohm Speech Coil. Model SS9 CONDENSERS
64 mid. 350 v .
$\Varangle 5 \quad 15 \quad 0$
$32 \times 16 \mathrm{mid} .350 \mathrm{v}$.
$8 \times 8 \mathrm{mid} .350 \mathrm{v}$.
$24 \times 8 \mathrm{mid} .350$
$32 \times 4 \times 4 \times 4 \mathrm{mfd} .350 \mathrm{v}$.
WIRE WOUND VOLUME CONTROLS
5 ohm, 200 ohm 10 K ohm, 5 K ohm, 15 K ohm, 20 K ohm, 25 K ohm, 35 K ohm, 50 K ohm, 2 ea $\begin{array}{llll}\text { All ... } & \mathbf{2} & \mathbf{9} \\ 50 \mathrm{~K} \text { ohm preset }\end{array}$
500 ohm pre set Wire Wound Control
$\begin{array}{lll}\text { ea. } & 1 & 9 \\ \text { ea. } & 2 & 0\end{array}$
CLR 9021000 ohm preset ea.
CONDENSERS. Wax Tubular
CONDENSERS, Wax Tubular $\quad 70$
-02 mid., 1000 vdoz.
TAPE RECORDING MOTORS

P.V.C. COVERED WIRE, brigh colours, red, green, blue, RUBBER GROMMETS
RUBBER GROMMETS, various 6d.

ROMAC TELEVISION RECEIVER

MODEL 189. BRAND NEW IN MAKERS CARTONS COMPLETE WITH 17 B.V.A. VALVES, ETC. BUT LESS TUBE, VALVE TYPES ARE: 6AM6, 6AL5, 12AT7, 2754, I85BT EY51, 6V6GT
THESE SETS WERE LISTED BY THE MAKERS ATOVER C80. SPECIALPURCHASEENABLES US TO OFFER AT ea. 62500 less tube. a CHARGE OF 25 /- IS MADE TO COVER CARRIAGE AND PACKING AND INSURANCE. BRIMAR CI2B TUBES ARE AVAILABLE AT CURRENT PRICE. FULL SCALE ABLE AT CURRENT
CIRCUIT DIAGRAM

10 VALVE $1 \frac{1}{2}$ METRE SUPERHET. Ideal for T.V. conversion IF's 12 Megs. Band ldeal for 1.4 . Conversion insut and output, width 4 megs. Co-Axial input and output,
Mazda valves with 6.3 v . filaments. $58 / \mathrm{e}$ ea. Mazda valves
Carriage 4
Carriage 4 /
INGICATOR UNIT TYPE 6L. Brand new with EF50 valves. VCR97 wire wound volume controls, $67 / 6$ each. Carriage 7/6.
TERMS: Cash with order or C.O.D. Piease note minimum C.O.D fee $2 / 3$.
Postage. Pleas ONLY
to 40 - Fase add bd to $10 /-, 1 /$ - to 20/-, $1 / 6$
ALPHA RADIO SUPPLY CO.
56 Vince's Chambers, Victoria Square, LEEDS 1

WANTED, EXCHANGE, ETC. W transmitters. (Z A. 10729) -Call or ring. P.C.A Radio The Arches. Cambridge Grove. WANTED, set manufacturers' or ex-Government radio equipment, large or small quantities of valves, electrolytics, speakers, meters, LOWE BROS
Tel. Museum 4389. Fitzroy St., London. W. 19745
W ANTED BC-610 Hallicrafters. RCA ET-4336 W transmitters SX-28. AR-88. S-27 HRO receiver and spare parts for above best prices.
WCA Radio, The Arches. Cambridge Grove. \bar{W}^{PCCA}. Radio, The Arches, Cambridge Grove.
WE purchase all types of domestic or exGovernment radio receivers and equip:nent send rull details or call and collect cass stores. 48. Stafford St., Wolverhampton. 10146

A LTHAM RADIO Co. pay highest prices in A the trade for all American equipment. including test sets, transmitters. recejvers. te. clinting qear, etc.-Jeisey House Jersey St,
Manchester, 4. Trel. Central 7834-5-6.
TO223 WANTED, AN/APR-4 ecelver, any units; W any other good quality U.S. surpius rad:o and radar tubes. test sets: laboratory equip-
ments, ete.: give condition and price in tirst ments, etc, give condition and price Patterscn Rd.. Dayton, 9. Ohio. U.S.A.
$W_{\text {ANTED, good quality communication ixs.. }}$ W domestic radios. test equipment. etc. toy prices paid: established
Radio, 382 . Newport Court. 1 min . from Leices Radio, 38a. Newport Court. Min. Wrom Leices. Hours of business $10-6$ p.m. Oven all day Houts
WANTED; we will pay 10% more for the with TS prefic American equipment lest sets tuning units. BC342, BC312. power units No 15 and PE98, teleprinter equipment.-Altham Radio Co., Jersey House, Jersey St.. Manchester, 4. Tel Centra $7831-5-6$.
URGENTLY wanted-VHF test equipmen: TSX-4SE, BC221s and any other types; valves klvistrons. magnetrons. 723/AB. receivers APR4 and TN-16-17-18 tuning units, RCA, AR88s, S27s, SX28s. S27CA and any late types, microwaye equipment or spares; highest prices 8410: prompt attention assured.-Universa. ${ }^{8410}$ plectronics. 27, Lisle St., Leicester Square. Electronics. ${ }^{27}$ London, W.c.2.

AERIALS
8 tons of aft lenths steel copper-covered 19, Mincing Lane, Blackburn. Tel. 7748-9.

REPAIRS AND SERVICE

A NNOUNCING a $48-\mathrm{hr}$ transformer rewind A FIRST-rate job for a first-rate engineer.
A FIRST-rate job for a irst-rate eng o.P.s, etc. ments. designed on ${ }^{\text {c }}$ core or conventional methods.
WILLIAMSON'S O.P. to original spec.: 80/-
ALL work fully guaranteed. Ltd. 28. Balmoral
WOODROW Transformers, Rd. Willesden. N.W.2. Tel. Willesden 2014

Mains transformers rewound. new transMOTOR ferminds and complete overhauls: first chass workmanship; fully guaranteed

\mathbf{R} EPAIRS.-E.H.T. mains and O.P. transformers, field coils and chokes: also armatures and motors: new transiormers des.gned to any specification all work fully guaranteed. Frithville Gdns. Shepherds Bush, London Frithvilie Gdns. Shepherds Bu
[0076
COMPREHENSIVE service to trade and C amateur: Design. manufacture and repair ists: equal attention given to small or large orders. See also below hour service, cleaning
AUTOCHANGERS. A8-hour and adjusting at fixed price of $35 /-$ plus curriage also all repairs carried out, trade enMews, London, w.2. Tel. Paddington 5092 (2 lines).

1438
$\mathbf{R}^{\text {EWINDS }}$ and conversions to mains and out R put trans. pick-ups, fields, clock coils. etc. from 4/6, P.P. equipment a specialty: ant work guaranteed.-N. Wordsworth 7791. Tel. Whe [1416

M AINS transformers, E.H.T. line outputs efficienokes and field coils, etc., promptly and efficiently rewound or, manuactured to any
specification, 36 hours' service, 12 months LADBROKE REWIND SERVICE Ltd. 820a Harrory Rd Kencal Rise N.W 10 Lad 0914

24 -HOUR service. 6 months' guarantee. any 24 transformer; rewind. mains outputs and i.f.s. etc.: all types of new trans. etc.. sudvice card for trade prices.-Majestic Winding

Armestrong

3 NEW TELEVISION RECEIVERS OF EXTREMELY ECONOMICAL PRICE

TELE-GRAM

A lifin. flat faced rectangular Television receiver combined with the very latest three speed record player, housed within a handsome veneered walnut cabinet 35 in . high, 20 in . wide, 20in. deep, 19 valves. Aluminised tube with tinted filter, pin point focussing coupled with full bandwidth and accurate interiacing ENSURES BRILLIANT DAYLIGHT VIEWING 5 channeis-selected instantareously. 10in. loudspeaker for magnificent reproduction. A.C. mains $200 / 250$ volts

Price: 78 guineas (inc. P. Tax).

TV. 5 14" CONSOLE

The 14 in . Console model is exactly similar in all respects to the Tele-gram, with the exception of the record player, as described above.

Price: 69 guineas (inc. P. Tax).

TV. 5 17" CONSOLE

Similarly this lin. model which gives a superb large picture has the same specification as the 14 in . models.

Price: 79 guineas (inc: P. Tax).

Please send for illustrated details and price list. For the convenience of customers who are unable to call during normal working hours, we are now open until 5 p.m. on Salurdays.

ARMSTRONG $\underset{\substack{\text { WIRELESS\& } \\ \text { TELEVISION }}}{\text { CO.LID. }}$ WARLTERS ROAD, hOLLOWAY, LONDON, N.7.

Telephone: NORth 3213

TUNERS

S6BS
9 Band (6 Electrical band spread) with R.F. F.C. 2 I.F. Delayed Amplified A.V.C. Variable Selectivity, Fly Wheel Tuning. Tropicalised. Suitable for use with any High Quality Amplifier. £44. Tax paid.

3 Wavebands. $16 \mathrm{~m} .-2,000 \mathrm{~m}$. R.F. Preamplifier, variable selectivity I.F. Delayed amplified A.V.C. Very low distortion £21/68. Tax paid
S5E
As S 5 but $12.5 \mathrm{~m} .-550 \mathrm{~m} . £ 21 / 6 / 8$. Tax paid.
S4 The Standard high-quality Feeder Unit. Specification as $\$ 5$ but without R.F. amplifier. $\mathrm{El6}$. Tax paid.

A modified version of all models is available for use with Leak or Acoustical Amplifiers.
C. T. CHAPMAN (Reproducers) LTD. RILEY WKS., RILEY ST., CHELSEA, S.W. 10

WONON CENTMAL ixallo sucse

E ELECTRO MAGNETIC COUNTERS

Ex-G.P.O., every one perfect, electro-magnetic,
500 ohin coil, count ing to 4,909 , operated from 500 ohm coil. coint ing to 4,994 . operated from industrial and domestic applications, $15 /-$. Equal to new. Post \& pkg. 9d.
Bin. P.M. SPEAKERS. 3 ohm. speech coil Slightly used less transformer 9/6. Post \& mag
VIBRATORS, 2 -volt. Type R76C. 7 -pin self rectifying. Output 200 v . at $60 \mathrm{mA}, 7,$.6 . 1. A I 1 d

SLIDING RESISTANCES. ${ }^{2}$ ohm. 20 amp . For duming, etr. With hand wheel geared for sliding purposes. Weight 9 lb . Size $15 \frac{1}{2} \times$ 13ins. 52/6. Post \& plag. ㅍ/t.
UNISELECTOR SWITCHES. Have many applications, including automatic tuning cirant selection, etr. Operates on $25-50-$ Full Wipers, 3-bank, 196 b bank, $35 /-$,
Half Wipers,
thank, 276 . Plus $1 / 6$, Half Wipers, li-hank, 276 . Plus 1/6 P. \& P P, N.B.-We do not issue lists or catalogues. Carriake charges relate to Brıtish Isles only-

23 LISLE ST. ($\left.\begin{array}{c}\text { GERrard } \\ 2969\end{array}\right)$ LONDON, W.C. 2 closed Thursday 1 p.m. Open all day Saturday.*

GLECTRICAL RAIRS AND SERvice
E standardized, all types British or American. ammeters. voltmeters. ohmmeters, DC/AC multirange meters, etc.; meters converted to speciTHE ELECTRICAL INSTRUMENT REPAIR Tel. Lad. '4168. Kilburn Lane. London. [113í Tel. Lad. 4168

MISCELLANEOUS
WOOD screws 1, in $\times 10$, black japanned, $1 / 6$ St. Birmingham. 12 . St.. Birmingham. 12. 11381 E LECTRIC welding plant. used and unused Eior saie: s.a.e for lists.-Harmsworth, Plywood, hardwood, free list on request, maherany ply. $12 / 6$ sheet. oak ply, $22 / 6$. N. Gerver, 10, Mare St., Hackney, London $14 \frac{5}{32}$. CABLES. Wires and flexibles. P.V.C. coverta. 100a. St. Vincent Drices.-R. Ancoats. Manchester. Low. $\mathbf{S T E E L}$ lattice and guved radio masts. 100 It Shigh, for sale delivery from stock: excel-
lent condition.-Bellmans, Terminal House.
METALWORK, all types cabinets. chassis, capacity availabie for sour own specifications: work pp to lin bar. Chapman St., Loughborough. 10208 A high vacuum impremation unit to R.I.C. good delivery at competitive prices fiom blick vac Components and Assemblies. 505. Lordshio Lane.
S.E.22. Forest Hill 7089. YOUR own tape recording transferred to disc. Recording Studios, 123 , Queensway. W.2. Tel. Bay 4992 Studio recordings, tape recording
service. Price list on reauest. Plated nuts, screws, washers, bolts. solder-grub-screws. socket-screws. wood-screws: large quantities or gross cartons; stamp for list.-
Sinden Components. Led.. Dept. B. 117. ChurchSinden Components. Ltd. Dept. B. 117. Church-
field Rd.. Acton. W.3. Acorn 8126.
$\mid 1415$ $\mathrm{E}^{\text {NGRAVING }}$ the opportunity of engraving problems in the future by Windmill Rd London A.G. Engraving. 19a, Windmill Rd, London. S.W. 18 .
Bat. 5793 . Brass. bronze. erinoid, Perspex dials Bat. 5793 . Brass. bronze. erinoid. Perspex dials:
one knob or repetition equally retained.
10034 COPPER wires enamelied, tinned. Litz, cotton. washers, soldering tass. evelets. ebonite and Waminated bakelite panels. tubes. coil formers:
Tufnol rod; headphones. Hlexes. etc. ; latest radio Tufnol rod; headphomps. Hexes. etc.; latest radio
publications, full range available: list. s.a.e.: publications, full range availablei list. s.a.e.
trade supp.ied.--Post Radio Supplies. 33. Bourne Gardens, London, E. 4 marking radio and elecDronc equipment, clear permanent lettering manent. Govt. approved; available in book form Each book contaring aprox. 750 titles. coverins all aspects of radio and electronic eauipment:
price $4 / 9$ plus $3 d$ post in bTack price $4 / 9$ plus 3d post. in black or white.-
Alexander Equ.pment. Litd.. Childs Pace, Earls Alexander Equ.Dment. Ltd.. Childs Pace, Earls
Court. London. S.W.5.

> SITUATIONS VACANT

The enoagement of persons answering these advertisements must te made through the local
ofnce of the Ministru of Labour and Nutional offce of the Ministry of Labour and National
Service, etc., if the applicant is a man aged 18-64 or a woman aged 18-59 inclusive. unless he or she or the emplover is excepted from the provisions of The Notification of Vacancies Order 1952

GUIDED weapons.

ELECTRICAL Engineer, or mathematician with relevant post-graduate experience, required for theoretical work on cesign of automatic con-
trol systems: some know'edge of effect of noise on servo-mechanisms an advantage; senior staff appointment with good salary and prospects; pension scheme.-Write in detail to Personnel Ganager, de Havilland Propelers, Ltd., Hat e:d. Herts
UNIVERSITY of aberdeen.
ELECTRONICS mechanic required for Physics whthout supervision ab'e to construct apparatus from theoretical circuit and desien simple circuit to specification: some general workshop experience useful: wage £ 365 to $£ 450$. according to experience.-Applications to the
Secretary. University of Aberdeen. CROWN Agents for the Colonies.
WIRELESS Station Superintendent required by the Nigeria Government Posts and Telegraphs the first instance with prospect of mermanen and pensionable employment: salary etc. in scale, £750, rising to $£ 1.175$ a year; outfit allow ance £60; free passages for officer and wife and assistance towards cost of children's passares or their maintenance in this country liberal leave on full salary: candidates (under 40 years) must have had wide practical experience of ticular V.H.F. equipment. and preferably also V.H.F. multi-channel equipment. APPLY in writing to the Crown Agents. 4. Millletters. full qualifications and experience and
quoting M2C/28927/WF.
[1379

THE FASTENER WITH ENDLESS APPLICATIONS—SIMPLE—POSITIVE SELF-LOCKING. MADE IN A VARIETY OF TYPES AND SIZES. SPECIAL FASTENERS TO SUIT CUSTOMERS REQUIREMENTS. WIDELY USED IN THE RADIO INDUSTRY.

Mllustrated brochures and other information will be gladly sent on request,

Oddie, Bradbury \& Cull Ltt., Southampton Tel.: 55883.

High-fidelity amplifiers such as our own " N.S.P." models are naturally on their very best behaviour when the ancillaries . . motor, pickup, speaker, etc. . . . are of comparable excellence. We can confidently recommend the followingavailable by return post from our stocks of high quality components:
MOTORS: Connoisseur, Garrard, B.S.R., Collaro, Decca.

PICKUPS: Connoisseur, Decca, Acos Chancery.
SPEAKERS: Wharfedale, Goodmans, Whiteley.
SEPARATORS: Wharfedale, Whiteley.
EQUALIZERS: Wharfedale.
CABINETS : Reflex, Corner Baffles, Amplifier, to your specification. Quotations by return.
AMPLIFIERS: Leak-Quad.
STYLI: Connoisseur, Decca, Chancery, Garrard.
L.P. Records Post Free by return post. Current Catalogues available.
"N.S.P." AMPLIFIERS available
A.C. MODELS: "Sovereign" $£ 26$; "Major" $\mathrm{EI7} / 10 /$; "Domestic' fll/10/-,
UNIVERSAL MODELS: "Major" £19/10/-; Domestic $£ 12$.
N.S.P. FEEDERS : V/Selectivity (LMS) t|7/17/-; 3 Band (LMS) $\mathrm{f} 13 / 15 /-$; 2 Band (LM) fll/5/-; 3 Stn. Pre-set S'het. E8/18-; 3 Stn. Pre-set TRF £7/12/6; Wrotham (AM) $66 / 9 / 6$; N.S.P. Precision Scratch Filter 59/6.

NUSOUND PRODUCTS LTD.
(Dept. W7) 136 WARDOUR STREET, LONDON, W.I.

Tel. : GER rard 8845
Hours of business: 9 a.m.- 5.30 p.m.
Saturdays 9 a.m. -1 p.m.

U.S. WAR SURPLUS WANTED

APR-4, APR.5, APR-I, ARC-3, etc.: TS-12 $13,34,35,36,45,120,146$, IS5, 173, 174, 175, 323 and other "TS-" units, etc., particularly for the MICROWAVE REGION; also U.S. commercial laboratory equipment (General Radio, Ferris, etc.); special tubes such as $723 \mathrm{~A} / \mathrm{B}, 3 \mathrm{C} 22$, etc.: spare parts, technical manuals; single units oi* large quantities.
Sell direct to us, receive the full top price.

Describe and price to:

ENGINEERING ASSOCIATES

444 Patterson Road, Dayton 9, Ohio, U.S.A.

CROWN Agents for the Colonies

METEOROLOGICAL Assistant for radio/radar duties required by the East Africa High Commission: option of appointment either (a) on probation tor two years leading, subject to satisfactory service, to permanent and pensionable employment or (b) on contract tor one
tour of $30-48$ months with gratuity of $131, \%$ of total salary earned; saiary, etc, in scale £715 rising to $£ 1.170$ a year; outfit allowance £30, free passages: liberal leave on full salary; candidates must have had good experience of operation and maintenance of ground ladal equipment and be capable of undertaking radio-sonde/radio-wind operation. including the demaintenance of meteorological electronic equipment including ionospheric sounders, "Sferics" and diesel electric equipment.-Apply in writing to the Crown Agents, 4, Millbank, London, S.W. 1 , stating age, name in block letters, ful,
qualifications and experience and quoting M2C/33571/WF.
$C^{\text {R }}$
WIRELEESS operator mechanics reguired for the Falkland Islands Dependencies Survey for one toul of 18 or 30 montiss in the first instance. Salary in scale £330 Ising to £420 a year. Quarters, subsistance, clothing and libe al can-
teen stores free white in Dependencies. It is teen stores tree white in Dependencies. It is possible to save almost all emoluments. Liberal leave on full salary. Candidates must be able th (plain language or code) and be capable of elementary maintenance of wireless transmitting and receiving equipment, Apply in writing to the Crown Agents, 4. Milbank London. gualif:stating age, name in block letters. fult qual. CROWN AGENTS FOR THE COLONIES.
ASSISTANT SIGNALS OFFICER required by the Government of Nigeria for the Aviation Department for one lour of 18 to 24 months in the \&750 rising to s1,315 a year with prospect of £750 rising to $£ 1,315$ a year "ith prospect 01 a year. on a temporary basis with gratuity at the rate of £100 a year. Outfit allowance £60. Free passages for oficer and rife. and assistance towards cost of children's passages. or
their maintenance in the United Kingdom. Lheir maintenance in the nite fave on full sary. Candidates must Liberal leave on ful salary of electricity and magnetism and of radio engineering with experience in the maintenance of aeronautical radio transmitters and receivers. direction finders, test equipment and small petrol and diesel'engine generator sets. Work shop experience and a knowledge or radar wh be of advantage. Minimum examination qualifications are C. \& G. Certificate in radio communications or technical electricity. or satisfactory pass in M.C.A. that mecran Agents, 4. Millbank. Iondon, S.W.1. stating age. name in block letters. full qualifications and experience and quoting M2C/29637/WF. [1363
$V^{\text {ACANCIES }}$ in Government Department.
LEADING Draughtsmon and Draughtsmen are required, With experience in the layout of telecommunication and electinal desim. preparation of all mechanical drawings. sub-assemblies and final assembly, circuits. specifications. and
stock-lists: suitable for prototype and batch stock-lists; suitable for prototype and batch
production manufacture. Practical workshop experience and knowledge of modern methods an asset, but not SALARIES: Consolidated Provincial Rates. LEADING Draughtsmen $£ 592 \times £ 20$ to $£ 702$ DR.AUGHTSMEN: £374× £20 to £597
APPLY in writing: Personnel Department. G.C.H.Q.. 53, Clarence Street, Cheitenham. 1362

CROWN AGENTS FOR THE COLONIES.
RADIO Officer required by the East Africa High Commission for the Directorate of Civil Aviation for one tour of $30-48$ months in the first instance: salary according to ake and experi-
ence in scale $\begin{aligned} & 687 \\ & \text { rising to } \\ & £ 929 \\ & \text { a }\end{aligned}$ year: ence in scale $£ 687$ rising to $£ 929$ a vear:
gratuity between $£ 74$ and $£ 96$; outft allowance §30: free Dassages liberal leave on full salary: candidates should possess the First Class Certifate of Proficiency in Radio Telegraphy issued by the Ministry of Civil Aviation or alternatively an Operator's Licence of equivalent standard provided they have had at least tive years' operating experlence and can operate at 25 uords a minute Apols. in writing, to the Crown Agents,
stating age. name in block letters. fuli qualifisations and experience and quoting M2C/32494, WF.
FERGUSON RADIO COR fording staft. DEVELOPMENT Engineers. senior and junior, for radio. television and electronics: previous
experience of circuit development work absoexperrence of circuit development work abso DRAUGHTSMEN. experienced in radio and television teceiver design (and small mechanical details). able to prepaic drawings fol
manufacturer of prototype equipment. Apply manufacturer of prototype equipment.-Apply Cambridge Rd., Entield, Middlesex. POSTS are permanent, progressive and pen-
sionable.

${ }_{\text {Est. }} L \cdot R \cdot S$

1925

FOR
 PROMPT \& EFFICIENT SERVICE

CASH or EASY TERMS
NEW EASY TERMS
LEAK
TL/22 (See Moker's Advert, Dage 83) TL/I2 POINT ONE, AMPLIFIER Cosh E28.7.0
‘VARI-SLOPE' PRE-AMPLIFIER Cosh E12.12.0 For the two units: Deposit $£ 9.0 .0$ with order and 18 monthly instalments of $40 /$ Passenger carriage $10 /$-extra payable with deposit.

CONNOISSEUR

Three-speed Gram Units and Super Lightweight Pick-ups to match the above can be supplied from stock. Terms available.

LOUDSPEAKERS

The complete Wharfedale and Goodmans range of speakers are available on Easy Terms-please let us have your requirements.

ARMSTRONG CHASSIS
The EXP. 73-RF. I 04 -and EXP. I25 Chassis can be supplied on Easy Terms. Write for full specifications.

CABINETS

We can supply suitable high-grade radiogram and loudspeaker cabinets for all the above. Made to special order only.

14 FREE SHAVES

WITH THE NEW

SUPER REMINGTON CONTOUR 6 ELECTRIC SHAVER

will convince you that this remarkable new shave really does give a better, more pleasant and far quicker shave than any other method.

OUR
14 DAYS' FREE TRIAL is available on
receipt of $20 /-$ deposit (returnable if not entirely satisfactory). with eight monthly instalments of 20/-
Cash $£ 8.10 .0$.
 AC/DC 200/250v.

GUARANTEED 12 MONTHS

Other voltages available. Each shaver is BRAND NEW and despatched in superb silk lined presentation case.

The L.R. SUPPLY CO.LTD.
(LONDON RADIO SUPPLY CO.) BALCOMBE - SUSSEX

Telephone : Balcombe 254

SOUTHERN RADIO'S WIRELESS BARGAINS TKANSMITTER-RECEIVERS (Walkie-Talkie) Type 38, Mark II. Complete with 5 valves, microphone, headphones and aerial. Less batteries Guaranteed fully and ready for use. $\mathbf{£ 4 / 1 5} /-$, post paid. Extra junction boxes for above, 26 . TRANSMITTER-RECEIVERS No. I8, Mark III Complete with all valves but less batteries and attachments. Guaranteed ready for use. $£ 7 / 17 / 6$, carriage paid. No. 18 , Mark III. BRAND NE ${ }^{\prime}$ complete in original packing cases with ALL artachments and full set of spares, incl TELESONIC 4 -valve battery portable. Com plete with 4 Hivac valves. Contained in metal carrying case. Easily convertible to personal portable. Brand new. $\mathbf{£ 2}$, including conversion sheet and post
RECEIVERS RIO9, complete with 8 valves Vibrator pack for 6 volts. Contained in metal case with built-in speaker. 1.8 to 8.5 megs. Guaranteed. 67 , carriage paid.
MINISCOPES, GEC.
MINISCOPES, G.E.C. M86IB, Brand new, complete in carrying case with plugs, $\mathbf{f 1 2 / 1 0 / -}$ WOBBULATOR for Miniscope M86IB, $44 / 10$ RESISTANCES. 100 assorted useful values wire-end, $12 / 6$.
CONDENSERRS. 100 assorted mica and tubular, 15 /LUFBRA HOLE CUTTERS, adjustable $\frac{3}{4}$ in to $3 \frac{1}{2}$ in. For use on wood, metal, plastic, etc., 5/9. PLASTIC MAP CASES 14 by $10 \frac{3}{4}$ in., $5 / 6$. STARIDENTIFIERS, TypeI. A-N. Covers both hemispheres, complete in case, $5 / 6$.

WIA and WII2, I/- each. MARCONI AERIAL FILTER UNITS (P.O spec.), 4/6.
CONTACTOR TJME SWITCHES. 2 impulses per sec. Complete in sound-proof case. Therm control, II/6.
REMOTE CONTACTOR for use with above, $7 / 6$.
5 SE
SPECIAL OFFER TO EXPERIMENTERS. TWELVE meters and aircraft instruments. Only needs adjustments or cases broken. Twelve instruments (including 3 brand new aircraft instruments), 35-.

Full list of Radio Books $2 \frac{1}{2} d$.
HUNDREDS OF FURTHER LINES FOR CALLERS. SOUTHERN RADIO SUPPLY LTD. W.C. 2.

GERrard 6653

THE

DESIGN and DEVELOPMENT

of specialised equipment for Research and Industry
DUN (electronics) \& CO., 17 Victoria Gardens, London, W.11. Park 6636

Before constructing any of the equipment described in this Magazine *Send to
 miths
 of
 EDGWAREROAD

for prices of components required (no general catalogue availaole yet) Price lists still available for:
"Sensitive T.R.F. Receiver"'(Nov. 1951) ("W.W." Reprint $1 /$-)
"F.M. Feeder Unit" (Sept. 1952) (Complete Kir of parts less valves and diodes $\mathbf{7 0 / -}$) *or better still, drop in and see the amazing
H. L. SMITH \& CO. LTD. 287/289 EDGWARE ROAD, LONDON, W. 2 Telephone: Paddington 5891 Hours 9 till 6 (Thursday, I o'clock)
Near Edgware Road Stations, Metropoliton \& Bakerioo

SITUATIONS VACANT

A v. ROE \& Co., Ltd., have a vacancy in ENGINEERING Research Department on interEsting work for an
ELECTRONIC Engineer preferably with knowledge of electronic equipment used in vibration lesting. and strain gauge work; some knowled ge of vibration and fatigue an asset.
ApPLICANTS for the above post should possess ent east Higher National Certicate or equivaGOOD salary and prospects.-Apply. stating THE Lualifications and experience:- Co.. Ltd. THE Labour Manager. A. V. Roe \& Co.. ${ }^{\text {Ltd }}$ Gid
Greengate. Middleton. Manchester.
ELECTRONIC Engineers required by The General Electric Co.. Ltd. Brown's Lane. Allesley, Coventry, in their Development Labo(a) TRIALS team in connection with guide eapons; 2 senior engineers. also 3 engineers. (b) SERVO-MECHANISMS, 2 engineers.
(c) MAGNETIC amplifiers; 1 engineer.
(d) PULSE circuitry; 4 engineers.
(e) MiCROWAVE circuits; 1 senior engineer. ${ }^{2}$ (f) TEST equipment; 1 senior engineer, 3 (f) TEST equipment; 1 senior engineer, 3
engineers. GENERAL radar circuit development: 1 eneral radar circuit development. 1 senior engineer, preferably with a degree or an
Appirants.
equialent qualitcation. should have had at equivalent qualitication. should have had at least two years' experience in the development and engineering of service equipment as well as experience in one of the above
HOUSES on the outskints of Cove
aboratories, are now a vailable for offer to successful applicants. and this offer can only remun open for a tew months; applicants' holiday requirements will receive special attention. Reply. stating age, qualifications and experi-
ence. to Personnel Manager. Ref. R.G. 1382 ence. to Personne Manaker. Ref. Racancies in our D Electronic Development Departhent for:. EIJECTRONIC Draughtsmen with experience of radio and radar chicuitry etc terested in small mechanisms and light 3. SENIOR and Junior Detail Draughtsmen. APPLY in writing: R, X. Pickering \& Co, $\mathbf{S}^{\text {ERVICE Manager required; commencing }}$ salary 5550 per year, with yearly increase.
E NGINEERS, B.Sc. or equivalent, for design E. work in connection with television circuits and associated coniponents.
MECHANLCAL engineers to undertake design of yibrators and/or switch and panel accessories. this class of work. ENGINEERS fully conversant with the desig of transformer's associated which equipment. A LARGE engineering company invites applications for the above permanent and progressive appointments necessitated by expansion of the company's business; superannuation scheme in reference WW/56, giving full details of salary reference W w 56 , giving full details of satary
required. to Box 7361 . INSTRUMENT mechanics required to serve as Ministry of Supply, Sellafield. Ministry of Supply, seliafied. gele ant apprenticeship.
INSTRUMENT mechanics (Electronic) must have sound theoretical knowledge of electronics (Ordinary National Certificate standard desir* able) with practical knowledge of pulse ampl fiers, D. C. anplifiers, electronic scalers, dis in wiring and assembly of electronic apparatus. Experience of test gear and general instrument calibration an advantage.
INSTRUMENT mechathes (physical) must have experience of industrial instiuments used in measurements and control of temperature. specific gravity, pH and flow; knowledge of properties an advantage. INSTRUMENT mechanics (general) must have experience of relay circuits and automatic tele-
phone exchange maintenance: know 2 dge of X phone exchange maintenance: knowiedge of X-
Ray and electrical measuring apparatus an Ray and electrical measuring apparatus advantage.
RATES of pay for 44-hour 5-day week: $153 / 1$ on pay agyeed after first assessment wil be applied from date of entry: possibility of advancement
to 195/1. in a reasonable period tor married applicants. APPLY, giving details of apprenticeship, irainand experience to Senior Labour Manater Windscale Works, Sellafield. Cumberland.

A

A TO electrician and radio mechanic, H.M.V. A car radio radio experience essential. J. W
Kieser \& Son Penrith, Cumb. Tel, 2061. [1367 TELEVISION radio electrical sajesman; good High St. Harlesden. N.W.io. Elgar 5914 .

TELEVISION and radio engineers required: mum rate of pay: bonuses and overtime. - Box $\mathbf{R}_{\text {ADIO }}^{\text {AD }}$ and television engineer reauired, fully experienced all makes for hench and out references.
ELECTRICAL SERVICE (EDGWARE), LTD. ELECTRICAL SERVICE (EDGWARE), LTD.
117 , Edgware Rd.. W.2. Pad. 2342 .

Electradix Offers $\bar{\Longrightarrow}$

DINGHY RADIO TRANSMITTERS

American Bendix Model BC778E, brand new, all the following components wired and fitted in metal case with knee strap.
One Hand Generator for H.T. and L.T One Miniature Relay i,000 ohms 28 volts. Two 6.3 volt warning bulbs. Holders. One small Neon lamp. One 2 -pin Socket-I2 fixed Condensers, assorted sizes. 6 fixed Resistors. One densers, assorted sizes.
valve $125 C 7$. One valve $12 A 6$. One variable air-spaced Tuning Condenser, . 0005 mfd. One at-way single pole 60 degree Yaxley Switch. 6 -way single pole 60 degree Yaxiey Switch.
One Transformer $B \times / 17 / 20$. One 6 -way Miniature Jones Plug and Socket. 4 Tuning Coils. One Push Button. One Coil covered Aerial wire, flexible. One Coil Earth wire. ONLY 55/- each. Corriage and Packing 5/- England. Wales and Scotiand.
CHARGING PLANTS. Special offer Westinghouse $110 / 250$ volt A.C. 50 cy . input $16 / 96$ cells 0 amps., selenium rectifier, m.c. ammeter $0-25$ new, in original packing case, $\mathbf{£ 3 5}$, carr. extra.
DYNAMOS, 500 watt, $50 / 68$ volts 10 amps., ball bearings, 1,000 r.p.m. continuous rating, 4 -hole fixing. $\mathbf{4 2 0}$. $14 / 32$ volt 9 amp. charging dynamos, 2,500 r.p.m., ball bearings, shunt wound, fan cooled, 4-hole feet, $£ 3 / 10 /-$, carr. 5/-.
LIGHTING PLANTS. Chore Horse 12 volts 350 watts, $\mathbf{E I T} / 10 /-$ Briggs \& Stratton $12 / 18$ volts 350 watts, with S / bd, and tank, $\mathbf{£ 2 2} 550$ watt Lyon Norman $12 / 18$ volts with fuel tank, $\mathbf{6 2 2 / 1 0 / =}$ 550 watt J.A.P. $12 / 18$ volts with fuel tank and witchboard in steel cabinet, 435 . Villiers 1,260 watt 36 volts 36 amps ., $£ 40$. Send for special leaflet. All plants tested on load before despatch.
NIFE BATTERIES. 1.2 volts 45 A.H. new single cell, 30/-, post $2 /$. Wood crate of nine cells, 12/10/-, carr. 10/-.
WORKSHOPINSPECTION LAMPS. Strong cage with wood handle and wrist strap, 6/-, post $1 / 6$.

ELECTRADIX RADIOS

Dept, A, 214 Queenstown Road, Londons'S.W. 8
—Telephone: MACaulay 2159

GOOIDSELL LTID.
for High Fidelity Equipment
40 GARDNER ST., BRIGHTON, I
Tel. : Brighton 26735.

G.E.C. GERMANIUM

 CRYSTAL DIODESMidget Size, $5 / 16 \mathrm{in} . \times 3 / 16 \mathrm{in}$. Vire Ends for Easy Fixing $4 / 6$ each, postage $2 \frac{1}{2} \mathrm{~d}$.

Technical Detailis and Selected T Types avaiable

B.T.H. GERMANIUM

 CRYSTAL DIODESMoulded in thermo-setting p. $4 / 6$ each, postage $2 \frac{1}{2} d$.
SILICON DIODES, 3/6. Postage $2 \frac{1}{2} d$. Fixing Brackets, 3d. pair.
COPPER INSTRUMENT WIRE ENAMELLED, TINNED, LITZ,
COTTON and SILK COVERED Most gauges available B.A. SCREWS, NUTS, WASHERS soldering tags, eyelets and rivets. EBONITE and BAKELITE PANELS TUFNOL ROD, PAXOLIN TYPE COIL
FORMERS AND TUBES, ALL DIAMETERS ERIE AND DUBILIER RESISTORS. Latest Radio Publications.

SEND STAMP FOR LIST. TRADE SUPPLIED

POST RADIO SUPPLIES 33 Bourne Gardens, London, E. 4

Receivers Type 109. 8-valve ex-Army receiver, in brand new condition, com plete with built-in power supply, loudspeaker and 4 spare valves. Frequency range on 2 bands. $1.8-3.9 \mathrm{Mc} / \mathrm{s}, 3.9-8.5 \mathrm{Mc} / \mathrm{s}$. Designed to operate from a 6 v . battery, no other power supply required. Waterproof metal case with waterproof canvas cover over front panel. Front panel measurements 13×10 in Complete with diagram E710/. Carriage 10 .
Large Magnets, as taken from magnetron units, weight approx. 9 lbs. Will lift up to $30.40 \mathrm{lbs} .30 / \mathrm{F}$ Post 26
Directional Indicators. Containing 2 50 micro-amp meters, scale marked L and R. Brand new and boxed, 8/6. Post 1/3 Miniature American Relays. 65 ohms $(6-12 \mathrm{v})$ with 3 sets of make contacts, $4 /=$ Post 9d
Polarized Relays, by S.T. \& C. for use on Simplex teleprinter units. Metal case with terminal strip at rear. Brand new and boxed, $20 /$. Post $1 / 6$.
Toggle Switches, with long dolly, 2-way on/off, brand new, 15- doz. Post 1/3.
Aerial Relays for 53 Set in metal box with connector lugs, 12/6. Post 1/3
Rotary Converters. 12 v. D.C. input, 230 v. A.C. output. Rated at 100 wat but will overload to 150 without over heating, $£ 6 / 10 / \mathrm{F}$ Carriage $7 / 6$
VCR. 97 Tubes. Special Offer. Brand new in maker's cartons, 30/. Post 2/6. Un repeatable at this price.
Mumetal Screens. VCR.97. Price $8 / 6$. Post 1
Paxolin Panels. Containing 6 Condensers. 5 resistances, pot tag, board, 3 B7G ceramic holders. 2/6. Post 6d.
Meters. $0-100 \mathrm{~m} / \mathrm{a}$. in black bakelite oblong case, brand new and boxed, $2 \frac{1}{4} \mathrm{in}$. dia. scale. 12/6. Post 1/6.
New List No. 10 is now available, price A. T. SALLIS
93. NORTH ROAD, BRIGHTON, 'Phone : Brighton 25806.

POTENTIOMETERS

 3Wire-wound and Composition types. Single, Ganged, Tandem Units. Characteristics : linear, log., semi - log., non - inductive. etc. Fuil details on request.

SITUATIONS VACANT

OMPETENT radio and television engineer equired for central service department of East Midlands area; good rates of pay and bonus | Echeme. assistance given to find accommodation. |
| :--- |
| schite Service Manager. Box 7520. |
| 1389 | .

MESSRS. PYE. Ltd. Cambridge, have vacanalso eiectronic wiremen on very interesting wors in their television transmission equipment de-partment.-Apply in writing to Personnel Department. St. Andrew's Rd.. Cambridge.

EECHNICIAN, with experience in electronic la!ge telecommunication engineering works. give particulars of experience, education and technical training. qualifications and commenc-
mg salary requiced; London S. E. area. $\begin{aligned} & \text { Box } \\ & 6765 \text {. }\end{aligned}$ [1019
MESSRS. PYE. Ltd. Cambridge have - vacancies for senior and iunior test engineers. also electronic wiremen on very mateles equipment department. Apply in writing to bridge.
grade
WIREMEN, skilled, required for h:gh-grade prototype work from schematic drawings an advantage, fist-rate workshop conditions. West London area and pension scheme. Write. stating age, details experience and present rate.
Box 7138 .
DRAUGHTSMAN wanted for a small drawing DrAUGHencman wanted dosign and drafting of electronic instruments for the industrial and telecommunications field.-Write, stating age experience and salary required, to Dawe Instiuments, Ltd., Harlequin Ave.. Great West Rd.
Rrentord.
R 1346
$\mathrm{R}_{\text {quired for }}^{\text {AD }}$ work on V.H.F. communication Required for work on V.H.F. communication gear and Government contracts for radio and radar equipment by Midland manufactures. any of the fields mentioned should write. miving
[1413 full details to Box 7631 .
CARDIFF-Leading television dealers hand--isiong all worthwhile afencies, require television engineers thoroughy oramed in on all leading makes of receivers: salary at $£ 500 \mathrm{p}$ a.; full particulars on application and copy references if possible: good accommodation provided if required.-Box 7608 . 「1408
DEVELOPMENT engineer required by well electronic apparatus: ability to exploit ideas and work on own intiative essential. Send full details of previous positions held and type of work undertaken. together with approximate
salary required, to Box 7204 . I ONDON BRICK Co.. Ltd.. has a vacancy for LONDON BRICK Co. Ltd., has a vacancy for some electronic expertence. to work in the Re-
search Deparment at Stewartby: salary f400search Department at Stewartby: Salary £to-
£ 550 according to qualifications and experience. Apply in writing to the Personnel Manager London Brick Co., Ltd.. Stewarthy. Bedford.

- ERRANTI Ltd. (Radio Department or Higher National Certificate ar equivalent standard 10 be engaged on the design of pro duction test equipment and to be responsible for maintenance and modification of existing eduipment; some experience of noodern rad.o THE position offers good orospects for advancement. PERMANENT staff appointment with pension APREfits A ATION forms from Mr. R. J. Hebbert. Staff Manager. Ferranti. Ltd Hollinwood. DESIGNER draughtsman: electronic instruments, or radio, good prospects and salary according to qualifications; prospects of housing assistance to suitable applicant, centre and a terviews. if required; near city centre and and amenties; within easy reach London.- Aboit
Marconi Instruments. Ltd., Longacres. Hat.
[1027 fieid Rd.. St. Albans
WELL-ESTABLISHED firm engaged in the and radio, requires two first-class experienced and radio to work in Greater London area: to the right men the job offers complete security and a fine opportunity for advancement: Sadary to commence £10 per week; driving licence
essential.- $80 x$ 7690.
INSTRUMENT maker at Norwood Technical L College, Knights Hill, S.E.27, for maintenance and construction of electronic test gear laboratory and experimental anparatus. rate qualifications and experience.-Further particuqualifications and application form from Principal, returs able within 14 days. (521)
DECCA RADAR, Ltd, require draughtsmen office preferably experienced in any of the office preterabing fields: radar, radio and electronic circuits. electlo-mechanical devices, light inechanical engineer.ng: knowledge of workshop prgctice essential Appicants must possess Ordinary
National Certificate or equivalent. positions per m'nent and progressive salaries based on A.E.S.D. Mates.-Write, giving
Chief Draughtsman. Deca Radar. Ltd. 2,

A WINDOW WORTH LOOKING INTO

American Valve Testers, Radio City

type W.134. Brand new, A.C. mains 230 volt, covering practically the whole range of American valves
A.C. Mains $200 / 50$-Volt 50 -cycle Meter Movements, complete with gear train down to 4 revs. per min., wondefful value, $12 / 6$ each. 25/73 Receiver portion-II96 T/R. Complete with all valyes in new condition, full instruction available for conversion, 39/6 each 465 I.F. Transformers, dust core tuned. 69 pai
High Stab Resiszors. 2 Meg., 2\% I watr. 1.2 Meg. 2% 古 and 1 watt, 1.5 Meg. $5{ }^{\frac{1}{2}}$ and 1 watt, $29.5 \mathrm{~K} .20{ }^{\frac{1}{2}}$ watt, $100 \mathrm{~K} .5 / 8 \frac{1}{2}$ watt, Bleeder Resistors. 100 K .150 watts, 200 ohms 150 watts adjustable, 800 ohm 150 watts, 350 ohm 40 watts, 40 K . 150 watts, 80 ohm 50 watts, 24 ohm 100 watts, a! at 2 -each.
Venner Hour Meters, for operation on 200/250 A.C. 50 cycle, synchronous movement, capacity zero-10,000 hours. 62:6 each,
Auto Transformers. $110-250$ volts 100 watts, $15 / 6$. I. 000 watts, separately wound, watts,
£6 10
W
Welding Transformers. Input voltage 230 volts 50 cycle, output $13 / 16$ volt, $65 / 75$ amps. $82 \cdot 6$ each
Mains Transformers. Ex-W.D. Inpur voltages 230 volt A.C., outpur 500×500 volt 170 mA ., 4 volr $3 \mathrm{amp} ., 22 / 6$.
Smoothing Chokes, Ex-W.D. 15 Henries, 275 mA . Resistance 125 ohms, $10 / 6$ each.
Dural Masts, Telescopic 15 in . to 7 ft . 6 in . 2 2'6 ea, ideal for making own T/V aerial. Mains Isolation Transformers. 230 volt 230 volt 50 cycle 1,000 watts, ex-W.D. $66 / 10 /$ each .
Microamp Meters. $0-502 \frac{1}{2}$ in. flush panel mounting, 59/6 each.
Battery Chargers. Ex-W.D. Input voltage $200 / 250$ volts 50 cycle. Output 12 volt $5 / 7$ amps, tapped at 6 volt, complete with $2 \frac{1}{2}$ in meter, manufactured by Heapberds. Brand new. f6/10/-
Chokes. Ex-W.D. Heavy Duty. 20 Henrie $300 / 4 \mathrm{CO} \mathrm{mA}$. Resistance 180 ohms . $17 / 6 \mathrm{each}$ Valves. Brand New and Boxed. VUlll Valves. Brand New and Box
4 volt E.H.T. Rectifiers, 2,6 each.
H.R.O. 6 Volt Vibrator Power Packs H.R.O. 6 Volt Vibrator Power racks
Output 165 volt 80 M . A., using 6×5 Rectifier Brand new, boxed, 39/6 each.
Rotary Converters. 24 volt D.C. input 230 volt A.C. 50 cycle output@ 100 watts $92 / 6$ each. Ditto, 12 volt input, $102 / 6$ each A.C. Mains Transformers, $200 / 250$ vol input, output 45 volt 4 amp.. $19 / 6$ each.
.02 MFD 8,000 Volt E.H.T. Smoothing Condensers, $1 /$ each.
4 MFD Mansbridge Condensers 500 volt working, $2 / 6$ each
working, $2 / 6$ each. 250 volt 60 mA . H/W., $5 /=$ Recti
Chokes. Ex-W.D. 20 Henries $80 / 100 \mathrm{~mA}$ Brand new. $8 / 6$ each

Don't forget your postage.
Open all day Saturday

G. W. SMITH \& CO.

3 LiSLE STREES LONDON, W.C

COMMUNICATION SALESMEN

For Home or Export.

Preferable age 25-35 years. Experience of U.H.F., V.H.F., and H.F. fields essential (but not radar). Nett earnings depending on commission should gross £1000-£2000 p.a. Must have had responsibleselling experience.

PYE TELECOMMUNICATIONS Ltd DITTON WORKS CAMBRIDGE

Joseph Lucas

(Gas Turbine Equipment) Ltd., invites applications for Electronic Engineers. Some knowledge of servo mechanisms would be an advantage. Should have university degree. These appointments are pensionable and offer good prospects to individuals with initiative and technical ability. Salary will be in accordance with experience and qualifications.
Details of experience and qualifications should be sent to

Personnel Manager.
Joseph Lucas (Gas Turbine Equipment) Ltd. Shaftmoor Lane, Hall Green, Birmingham.

VICKERS - ARMSTRONGS LTD

have vacancies in their Guided Weapons Department for Inspectors on inspection and test of complex electronic devices ; thorough experience of electrical laboratory instruments and low power V.H.F. technique essential ; knowledge of Servo Systems would be an advantage.

Apply in writing to : -

THE EMPLOYMENT MANAGER, VICKERS. ARMSTRONGS LIMITED (AIRCRAFT SECTION), WEYBRIDGE, SURREY.

Applications, with certain exceptions, are subject to the approval of the Ministry of Labour and National Service.

E K SITUATIONS vacant
E. K. Cole, Ltd. Electronics Division, men Mamesbury. Wiltshire, require Draughtsficate standard), aged 21 to 25 years. for in munication equipments. also for test wear, excellent conditions and prospects.-Apply, in writing, to Personnel Manager. 1099 $\mathbf{R}_{\text {ridges, }}^{\text {ADIO }}$ Ltd., sound experience of by selfincluding television essential; applicants must be able to drive a car; pensionable post for men under 43, good salary, staft restaurant sporis 9 and 11.30 am. Monday to Friday to Staff Manager, Provision Bulding, Orchard St., W. 1. THE ENGLISH ELECTRIC Co., Ltd., Luton, work in vave vancies for electronic engineers tor work in Australia on V.H.F. sub-miniature ecuipment with trials applications, assistance With housing will be provided-Applications,
stating age. experience and qualications stating age. experience and qualifications
should be sent to Central personnel Services 336-7. Strand. London, W.C.2, quoting ref. 456 .
ELECTRONIC engineer required by large food E factory in London in the development section on the construction of spectalized factory electronic equipment; age $20-28$; applicants should possess initiative and be capable of
iorking with the minimum of supervision; good working with the minimum of supervision; good canteen; salary according to ace and experjence.
Write Box W. 344, c/o 191, Gresham House E.C.2. LABORATORY assistants required on developcommunications: applicants must have National Certificate or higher qualifications and a special interest in chemistry or electrical measurements. Apply in writing to Peersonnel Manager:
Standard Telephones \& Cables, Ltd., N. Wool:
wich, E. 16 , Stating age, qualifications and saiary required.
$\mathrm{E}^{\text {LECTRONIC engineer for work in connec- }}$ of electionic measuring instruments; sound theoretical knowledge and several years; sound ence in this field essential; excellent opportunity for capable person to progress with young and rapidly expanding organlsation,-
Rivin Instruments, Ltd.. 7a, Maitland Park
T He De Havilland Engine Co., Ltd.-Electronic engineer required, interested in physical measurement rather than construction of apparatus. required for vibration measurement -Please write in confidence, stating age and full details of previous experience to the Personnel Officer, The de Havilland Engine Co., Ltd... Stag
Lane. Edjware. Middlesex.
$\mathbf{S}^{\text {CIENTIFIC instrument makers in North }}$ laboratory assistants and wire-men for development and production of hikh quality electrical and electronic apparatus.-Please apply in writing only. stating qualifications, officer. Hilger and Watts. Ltd.. Hilger Devision 98. St. Pancras Way. London, N.W.1. 19990 THE ENGLISH ELECTRIC Co.. Ltd., Luton, aevelopment work on V.H.F. radio sub-miniature equipment and/or recording techniniasome field trials encineers and assistants also required-Applications. stating age exveriance and qualifications, and cuoting ref. 456L. should be sent to Central Personnel Services. Enclish
Electric Co.. Ltd.. $336 / 7$. Strand, London. W.C.2.
PHYSICIST required in the north-west for the development of capacitors for west for the communication equipments. including silvered mica and paper and plastic dielectric types: the posts availatle are permanent. on full staff status with contributory pension fund, etc. Please write, giving full details of qualifications required to Box and the approximate salary 18-20. Regent St.. London. S.W.I. Fising $\mathrm{E}^{\text {LECTRONIC, radar }}$ and radio E senior and untor. are urgently engineers. new division of the General Electric Company at their Stanmore Laboratorles; applicants for the senior posts should be capable of directine the work of a small team engaged on the electrical development of electronic equipment for guided missiles or radar; knowledge of advantage.-Applications should be made an Wrantage, stating age. qualifications made in

werience to the Personnel Manager perience to the Personnel Manager, GEE.C. Stanmore Laboratorles Brown's Lane Division | The Grove Stanmore Common. Stanmore | |
| :--- | :--- |
| Middlesee, quoting ref. RG/BLS. | 19881 | D ECCA RADAR, Ltd., requires a senior enDineer to form a new division of the com pany undertaking the planning and erection of dom and abroad; the appointment calls for man between 30 and 45 years of age, with exceptional experience in the engineering design. planning and pogressing of electrical projects of a major nature: while a knowledge of radio and radar engineering at hirh powers is a distinct advantace. very favourable congineers; sound en given to heavy power en ence and ability to plan and direct are the maior requirements: a salary commensurate With the qualifications and responsibility will be paid: the post 1 s . Dermanent and pensionable Director. Decca Radar. Ltd., 1-3, Brixton Rd.

W00LWICH POIVTICHINIC

 college of engineering and ScienceWITH TEACHERS RECOGNISED BY THE UNIVERSITY OF LONDON PRINCIPAL: J.S. Tait, Ph.D., B.Se., A.R.T.C. M.I.E.E.

Students read for Internal Degrees and are affiliated to the University of London Union and Athletic Union.
B.Sc. ENGINEERING-Civil, Mechanical, Electrical, Telecommunications.
B.Sc. Special CHEMISTRY
B.Sc. Special MATHEMATICS
B. Sc. Special PHYSICS B.Sc. GENERAL All the above are Three Year Courses. A preliminary One Year Course available, if not levels, making a Four Years Course to the FIRST MEDICAI Degree.

XAMINATION-One Year PROFESSIONAL COURSES HIGHER NATIONAL DIPLOMASIN ENGLNERK. LNG. ASSOCLATE EHIP OF THE INSTITUTE OF Three Year Courses for St Fees: attained a suitable standard. 228 per Academic Year (no fee if under
18 years of age) plus $t 2$ Union Fee. 18 years of age) plus $£ 2$ Union Fee. Advice and information on Scholarships, Deferment, Entrance standards. etc., available on request to Secretary, Woolwich Polytechnic, S.E.I8.
(WOOlwich 2856)

HOLLEY'S RADIO
 285, CAMBERWELL ROAD, LONDON, S.E. 5

 Tel: RODney 4988Specialists in Hi-fi equipment All leading makes Open all day Saturday

AERIAL COUPLING UNITT. For 11 iret ss I 1 . Contains U.S.A. THROAT MIKES. Nizlity soiled otherwise neriect, $2 / 6$ eicli, posi free. $18 /-$ dozen to clear. post mox boxed. perfect condition, 5/: each, post 811 MASTER CONTACTORS. Cortains high grade clock OXYGEN FLOW METERS. Vane type, indicates TOGGLE SWITCHES, REF. No. 5D/531. Single pol-TWO-WAY JUNCTION BOXES. Ref. No. 5C/430 4- doz., post 94. 36--gross
 hecial buecial attention overseas enquiries.
 353, BEARWOOD ROAD, SMETHWICK. 16 Holly Road, Quinton, Birmingham, 32

> CITY OF COVENTRY EDUCATION coventry technical college Session 1953-54
> ELECTRONIC ENGINEERING
> Applications are invited for entry to the next 3 -year full-time course commencing in September, 1953, from those requiring a comprehensive training to an advanced level in ELECTRONIC ENGINEERING to qualify them for technical posts in radio, telecommunications, television and industrial electronics. The syllabus will cover the requirements of C. \& G., Brit.I.R.E., and I.E.E. examinations. Entry age 16 years or over. Application forms and further information Application forms and further information
available from the Principal, Coventry Technical College.
> W. L

> CHINN, M.A.
> Director of Education.
> Council House,
> 28-4-53.

BUY!

BUY!!

BUY!!!

and take advantage of our Summer Season Reductions ! Stamp for catalogue and full details.
And if you are interested in easily built equipment you should construct our

NEW SIGNAL GENERATOR

 which gives 12 spot frequencies covering 6 wavebands, plus IF. Neat and compact, mains operated with A.F. and R.F.(modulated or unmodulated) outputs, and also a

NEW SIGNAL TRACER

Complementary to the Signal Generator above and having the same dimensions. This piece of equipment enables you to listen to the signal at any point in a radio set from the aerial to the loudspeaker. These two pieces of equipment form an efficient pair and are tools no radio man should be without.
Full description, working drawings, circuit diagram, priced parts list, point-to-point wiring charts and instructions for either.

PRICE $1 / 6$ ONLY

for both 2/6 the pair.
Our famous HOME CONSTRUCTOR'S HANDBOOK, (full of circuits, hints, tips, etc.) is, of course, still available at $2 / 6$, or with either of the above sets of diagrams at 3/6.
SPECIAL OFFER. Home Constructor's Handbook and both above sets of instrutions. $4 / 6$ only.

ALL COMPONENTS AT SPECIAL DISCOUNT RATES

SO SEND FOR CATALOGUE NOW
SUPACOILS MAIL ORDER OFFICE 98, GREENWAY $\underset{\text { E. } 17}{ }$ AVENUE, LONDON,

COVENTRY RADIO
 Component Specialists since 1925 189 DUNSTABLE ROAD, LUTON Tel. : LUTON 2677
 Eddystone Receivers (740 No Tax) and Accessories. Components for "Viewmaster," "Tele-King " and "Electronic Engineering " Receivers.
 Stockists for:-
 Denco Coils. Bulgin Components.
 Raymart Accessories. Weyrad Packs. Osmor Coils and Wearite Packs and
 All B.V.A. and Tungsram Valves Send 6d. now for our new 50 page Catalogue

SITUATIONS VACANT
INISTRY OF SUPELY
crafismen to Dermental Mechanics at Malvern. permental Mechanics at Malvern. ALL applicants must have served a recognised apprenticeship
INSTRUMEN I MAFERS. Must be able to read INSTRUMENT MAFERERS working drawings Enghsh and 3 rd and interpret working drawings engish and Anstructions; ability to produce individual screntific test gear on a one ofl basis working to tine tolerances, and to operate the necessary machining tools. Knowledge of simple electronic circuits and ability to wire up an instiument from a diagram an advantage. be able to
CENTRE LATHE TURNERS. Must CENTRE LATHE TURNERS. Must be able to and 3 rd Angle. Work to fine limits in a wide range of materials, and have knowledge of reAbility to use horizontal or vertical boring machines an advantage. Must be able to set up and operate to fne limits vertical horizontal and universal milling machine working in a wide range boring and horizontal boring an cutting, jle worng and horizontan interpret PRECISION FITTERS to read and interpret working arawings angrish and pertorming own marking out. Ability to make on own initiative working models on a one off basis.
MECHANICS for Electrical and Electronic Work to read and interpret schematic wiring diagxams of electrical and electranic equa wire panels for electronic apparatus test and report on the condition of a wide range of electrical units, motors. generators, convertors, rectifiers. control gear, dist tribution mains. power and lighting circuits. install. operate and maintain electronic apparatus.
FATES of pay for 44-hour 5 -day week. $165 / 4$ on entry with prospects of advancement to highe rates. Hosiel accommodation available.
APPLY giving details, of apprenticesho training expluding Forces to Chief Superintendent. Radar Research and Development Establishment. Gt Malvern. Worcs.
$W_{\text {quired }}^{\text {althass.-T. }}$ T. Service engineer requdio, 18. Turnpike Lane. N. 8 , detailing experj-
PETO SCOTT ELECTRICAL INSTRUMENTS. PETO SCOTT Vacancies for TV develorment encineers of Graduate and Higher National
standards. ALSO Radar mechanics for work on should be freguency equibment Aodica Weybridge Factory.
TELEVISION development engineer of degree trict--Write stating experience, age and salary
T1336
Experienced TV engineers required for re-Salary.-Full details to Shenstones fop. Town Hall). Leyton, E.10. Ley. 1362. ELECTRONIC engineer required by new diviNorthern Ireland for deveopment work on guided weapons and other projects.
DEGREE or equivalent in electrical engineering or physics, with good practical experience, pref-
eraby of D.C. amplifiers. electronic computaerab!y of D.C amplifiers. electronic computa-
tion puise techniques. or miniature equipment. GOOD puise techniques, or miniature and prospects for man with DETAILSA of housing accommodation available and faciities for removal supplied at interview. SEND full ditails of age, qualifications and experience, quoting reference E.E.1, to Box 7295.
$\mathbf{S}^{E C O N D}$ radio and television engineer reDess: quired by old-established west end busi-
knowledge of all makes essential: ness: rood knowledge salary reauired. - Box
VICKERS-ARMSTRONGS. Ltd, (Airciaft Section, have vacancies for Technical Authors with electrical and radio experience. for comcivil
APPLY to Employment Manager, VickersArmitrongs. Ltd. (Aircraft Section). Weybridge. Surpy. sublect to the approval of the Ministry of Labour
T1358 EXPERIENCED TV engineer requlred to take C charge of service dept.. good salary and prospects, Write, Rivine experience and Witham. Essex.
SERVICE engineer and directorship--Required. Sadio/television service engineer, must be ship is offerec with this post if desired (North-
West)
I372 GLASGOW-Radio mechanic, preferably exont position with prospects: commencing salary ent position with prospects, commencing sabary son st. Gasgow
EXPERIENCED fault-finders wanted by Midpermanent posts located in the Midlands are offered to men with experience of radar, radio control. V H.F. equibment - Write. stating fully. experience and salary required. to Personnel
Manager. Box 7632 .

ALL ITEMS CARRIAGE PAID'

SPECIAL OFFER !

MAINS OPERATED DOOR BELL. At

 last a door bell without Batteries or Transformers. Operates direct from Mains and Supply. 3in. Magneto type Bell by famous manufacturer completely self-confamous manuacturer completely self-con-tained.
Equally suitable for burgar alarms, etc. 200-250 A.C. Supply only. Unrepeatable at $6 / 6$.

TOGGLE SWITCH. Single hole panel mounting, 250 volt, 2 amp. Single pole changeover or onloff. Brand new at 6 for 5 \%.
DINGHY TRANSMITTERS.
Ex-U.S.A.F.
B.C. 778 containing magnificent hand zenerator, output 28 volt 0.175 amps., $300 \mathrm{~V} . .04$ amps., two valves 12 S.C. 7 (V.T.268), 128 A. 6 (V.T. 134) with bases. One high quality 0.0005 mfd . variable condenser, 13 fixed condensers, 8 fixed resistors, 3 relays. Small transformer, morse key, two fiveway tag boards. Approx. 100 yds. braided copper aeria! wire on spool. Indicator lamps, etc., the waterproof case outside is solled, but the above contents in perfect condition. Limited quantity. Price 42/6.

EX-R.A.F. SIGNAL LING LAMP Trigger action control. Alignment Sights as illustration. Complete with 6 ft . Cable and 2 -pin plug. Easily converted to Car Spot Lamp.
Price excluding bulb $10 / 6$
MODEL MAKERS MAINS TRANSFORMER. All purpose low voltage. Input $210 / 250$ Volts. Output 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30 Volts. Rating 2 amps . Brand new, fully guaranteed 24/-.

AIR POSITION INDICATOR

Containing a wealth of gears, drives and shafts, 3 infinitely variable gears, lampholders, repeater motors. Veeder counters, has been used by many Universities as a basis of a calculating machine. €2/7/6.

HIGH PRESSURE REDUCING VALVE. Complete with $0-3,000$ lb. per sq. in. pressure gange. Suitable for compressors, Cylinders of gas, etc. Brand new. 8/6.
FLEXIBLE DRIVES. 4it., B/6; 2 ft ., 4/6. Suit ableforsmall tool remote

 12. SOLENOIDSWITCH.Ex-R.A.F actuation 600 arter switch, 24 volt rating. A beautiful precision job costing many pounds. Brand new. Each 8/6.
AERIAL. 16 in , solid tapered mast complete with flange fitting and con-

E IMPELLER PUMP. Approx.

 20 in . long $\times 2 \mathrm{in}$. dia. Adjustable flange fixing, 2 amps. at 24 v . d.c. or 4 amps. at 12 v . d.c. Ideal for bilge pumps or for transferring fuel or self-cooled by liquid passing through it. Brand new and boxed, 39/6 each. TERMS—CASH WITH ORDER.> NO CO.D.

SHERMAN'S SUPPLY CO. (W.2) 126, Kensal road, London, w. 10

THE MODERN BOOK CO

Radio Designer's Handbook by Langford Smith. 42s. Postage 1 s .
Brimar Radio Valve and Teletube Manual No. 5. 5s. Postage 4 d .
Television Receiver Design by A. G. W. Uitiens. 2ls. Postage 9d

The Radio Amateur's Handbook by the A.R.R.L. 1953. 30s. Postage Is

Radio Engineers' Servicing Manual by E. Molloy (ed.). 42s. Postage 15

Radio Engineering by E. K. Sandeman Vol 2. 55 s . Postage 1 s .
Sound by E. G. Richardson. 25s. Postage Is.
Radio Servicing Instruments by E. N. Bradley. 4s. 6d. Postage 3 d .
Radio Valve Data compiled by "Wireless World." 3s. 8d, Postage 3d.

Television Fault Finding compiled by Radio Constructor.' 5s. Postage 3d.

Television Engineers' Servicing Manual by E. Molloy (ed.). 42s. Postage I
Modern Oscilloscopes and their Uses by J. H. Ruiter. 5Is. Postáge Is.

Time Bases by O. Puckie. 32s. Postage Is
Electrical and Radio Notes for Wireless Operators. 5s. Postage 4 d

We have the finest selection of British and American radio publications in the Country. Complete list on application.

19-23 PRAED STREET, (Dept. W.7.)

LONDON,W. 2 PADdington 4185

HIGH GRADE TRANSFORMERS

FOR ALL PURPOSES SINGLY OR !N QUANTITIES TO YOUR SPECIFICATION Varnish impregnated BAKED WINDINGS With or without tag panels GOOD DELIVERIES
Our rewind dept. will handle your
P. HOWORTH

51 POLLARD LANE - BRADFORD
Tel.: 37030

THE CHAFFEY CABINET CO

WILL SOLVE YOUR PROBLEM
regarding any type of cabinet, large or small. We have specialised knowledge in the field of high fidelity reproduction, and owners of quality radic apparatus requiring exclusive cabinets are invited to send a sketch or relevant details for our quotation.
RADIOGRAM—TV-REFLEX RECORD-TAPE RECORDER, etc.

50a, Cheltenham Rd., London, S.E. 15

SITUATIONS VACANT

JUNIOR electronics enkineer reauired to assist puserial and a knowledge of d.c.amplifiers ould be advantageous
APPLICANTS, who should be 21-24 years of hould wite puoting full Naiticuiars to The Personnel Officer. E. Cowes. Isle of Wight. ref
W.We.jion EELEVISION engineers. experienced field and bility; good conditions: permanency- Apoly n confidence The Genuine Co., Lid., 364. EdM , Rd.. . Pad.
$\mathbf{R}^{\text {ADIO engineer required. for responsible }}$ irport. must hold : A" licence; salary in scale £600-£700 p.a, according to qualifications. ${ }^{13} 885$ Cher Enginee
SENIOR engineer with several years' experiby a manufacturer in South-West Londor write, giving full details of experience and salary required. to Box 7405 . [1364 $\mathbf{R}^{\text {ADIO mechanics required for deve:opment }}$ particulars of expertence, age, etc. to personne Manager. S. Smith \& Sons (Engiand). Bishops Cleeve. Nr. Cheitenham
ProDUCTION electrical testers required fot ery invion, radio and electronic equipment een techniclans only facilities and bars Radio, Ray Lea Rd., Maidenhead. 11344
R ADIO service mechanics required by Smiths $\mathbf{R}^{\text {(Radiomobile) Ltd, for all parts of the }}$ country.-Write details of experience and qualiflcations to personnel Officer. Goodwood works.
North Circular Rd., London, N.W.
N. North Circular Rd., London, N.W. 2. $\mathrm{E}^{\text {LECTRONICS engineer required for develop }}$ control systems, experience of design and contruction essential.-Write fully stating experience, qualifications and age, to Box 7522 . 1302
TEST engineer, electronics required, some ex 1 persence with oscilloscopes. pulse generators, counters and radar generally. preterred; Eiskine Laboratortes. Ltcl. Scalby, Scarborough
Γ ECHNICAL representative required by old correction equipment from electronic acou. excellent scope for ambitious man to develon and expand completely new tield.-Full particulars to Box 7064.
$\mathbf{E}^{\text {LECTRONIC engineer with Higher National }}$ development of V.H.F. equipment and components: applicants must have good laborator experience and sound practical knowledge in WRITE, stating qualifications. experience and a.ary requived, to Wingrove \& Royers, Ltd Domville Rd., Liverpool. 13 . \& Royers, Lid. A SSEMBLY wiremen required must be first-- Apply by letter, stating age nationality and experience to E.M.I. Engineering Developmen Ltd. (Wells Division), Penleigh Works. Welts Somerset. [1108
FIRST-CLASS radio and television engineers business: good salary and prospects; permanent all leading agencies, including Murphy. Bush
 A IRCRAFT radio mechanics skilled in work Ashop practice or aircraft installations to work at Stansted Airport. Essex: hostel accommodation available: minimum hourly rates $3 / 9$ Write to the Personnel Manager. Skyways of
London, 7 . Berkeley St.. W.1. 0019
B B.C. requires tracer for planning and in Btallation department, central London: wage E6/5 Wirh increments to $27 / 5$; some training electrical symbols and heory desirable.-Apen E. E. O., B B.C., London, W.1. 11338

SKYWAYS OF LONDON, have vacancies for tor radio engineer i/c and a radio section inspec port. Essex, hostel acconmmodation available
 SENIOR tester required by scientific instruof ment company located North-East outskirts electronic instruments housing electrical and can be provided.-Write giving full details of
age. salary. etc. to Box 7404 .
[1366 EXPERIENCED radio testers and inspectors and radio 10 r production of communication and radio apparatus. also instrument makers. tus. Apply Personnel Manaper" E. E. K. Cole DECCA RADAR. Ltd., invites application: Daduate this year and and engineers due to graduate this year, and who expect to get good and well-paid careers in radar engineering sor young men who are prepared io work hard British nationality essential.-Write, quoting Laboatory, 2. Tolworth Rise. surbiton, Surrey,

with a of tapemasier
TAPEMASTER RECORDING COMPONENTS Suitable for use with either Hartiey or Culpitts circuits. Retail JUNIOR MODEL. Play/record, imp 3,000 ohm at | Kc. Erase at each $\ell 119$ SENIOR MODEL. Play/record imp. 5,500 ohm at I Kc. Erase ... at each $£ 250$ Oscillator Coil in can each 106 Oscillator Unit, incl, coil and 6V6GT valveeach $£ 250$

TAPEMASTER MAGNET FEATURES. Electri

 cally balanced to ensure low "hum ' level Play/Record Model with .0005 in. gap ensuring max. top response. Beryllium Copper, nonmagnetic gapping. Mu-metal cores for Play Record models. Track width, Play/Record 082 in ., Erase .IlOin. Bias frequency 45 Kc . exactly matching Tapemaster oscillator unit and coils. Output 10 mV . Recording level 10 mV . With optimum bias, recording level and equalisation of Amplifier response in fre quency equals tape speed in inches/sec. Full instructions included for oscillator units and amplifier circuits. $\frac{1}{\frac{1}{3}} \mathrm{in}$. Track. Erase Magnets to match for tracking.AVAILABLE FROM ALL GOOD RADIO DEALERS

6. HARROW RD., LONDON, W. 2

FOR SALE - 4000 FULLERPHONES

MK IV YA06I8, MK IV* YA4I38 BRITISH \& CANADIAN
COMPLETE WITH HEADPHONES BRAND NEW

gUaranteed perfect condition

Packed in original cases ready for despatch
ALFRED LEWIN LTD.
147 HAMPSTEAD ROAD, LONDON, N.W. 1

YOUR METER DAMAGED?

Repairs Contractora to The Miniztry of Supheitypes of Voltmeters, Anmmeters, Microarumeters. Multiringe Test meters. Electrical Thermometers. Kecording listriments, ete. Gulk deliveries-for speedy estmate send defective

Electrical Instrument Repairers 96-100 ALDERSGATE STREET, E.C.1. (Tel. : MONarch 6822)

Radio anld Radar Technique

By A. T. Starr, M.A.,
Ph.D., M.I.E.E.

A survey of modern components and circuit techniques, intended primarily for designers of radio and radar equipment and for radio and radar engineers dealing with the subject at an advanced level. Particular attention is paid to noise, microwave techniques, waveforms, pulse circuit techniques, and electronic tubes. Profusely illustrated. 830 pages. 75 s. net.
" Although the nature of the contents precludes a simple treatise, Dr. Starr has produced a most rewarding one."
-Engineer.

PITMAN

Parker St., Kingsway, London, W.C. 2

LOUD-HALLER: Poweriul P.A. system. No valves to
 "terophone thd combtel amplifler:IReaker. PRICE £8/17/6. ("arr.

V.H.F. SUPERHET B-VALVE RECEIVER, SixFire, Taxis, etc. Componerits irclude 30 ceramic trimmers, 30 small condensers, 6 v/holders, cans and
covers, 30 resistances (t to 1 watt), 2 tranuformers 3 coils, etc. BARGAIN at 7/6. Also offered complet with yalves, at 1\%/6. Carr. $2 / 0$.
RADIO-TELEPHONE RADIO-TELEPHONE. Brand Lew Walkic-talkie operation, 12 folt nimeration from vibrator unit SPECIAL PRICE OF "\&21 per pair, complete with vihators. Carr. 15/-
RADIO-GRAM CHASSIS. Brand new, 1953 models, with latest valve linw-hp, dywheel tuning, negative
feed-hack, tut, six wave haud type it FIFTEEN
 these tumbles. Noth for complete catalogue. (Stamp) these thater. Mrend far complete catalogue. (stamps REDUCED to 2/9. Pust fid.
MICRO-SWITCHES. Latent American midgets. ACCUMULATORS. Bradin. Bew. 2 yolt, 12 a/H 1in. $\times I$ in. \times bin. Lead acid. Non-spillable vent
C.W.O. or C.O.D. Money back Guarantee

DUKE \& CO.
621 Romford Road, London, E.12. GRA. 6677

A SSISTANITS SITIIONS VACANT

A Commissioners invite applications fervice sionable posis. Ap:lications may accepted up to 31 St December. 1953 but an earlier closmn tition as a whole or in one or nore subjects. AGE at least $171 / 2$ and under 26 years of age on 1st January 1953 , with extension for regular
service in H.M. Forces, but candidates over 26 with specialised experience CANDIDATES must produce evidence of having reached a prescribed standard of education. particularly in a science subject and of thorough
experience in the duties of the ciass gained by experience in the duties of the ciass gained by service in a Government Department or other
civilian scientific establishment or in technical branches of the Forces, covering a minimum of oranches of the Forces covering a ninimum
two years in one of the following groups of scientific subjects:-
(i) Engineering and physical sciences.
(ii) Chenistry, bio-chemistry and metalluryy (iii) Biological sciences.

General including geology. meteorology. general work ranging over two or more work in laboratory crafts such as krlass blowing
SALARY acco ding to age up to 25: £236 at 18 to f363 (mny) or s 330 (wonnen) at 25 to $£ 500$
(men) or £ 417 (women): somewhat less in (men) or $£ 417$ (women) somewhat less in
provinces provinces fron Civil Service Commission, Scientific Branch Trinidad House. Old Burlington St., forms should be returned as soon as possible.

TEST and junior development engineers are required to assist in the development and production of precision electronic laboratory theoretical knowledge and have had substantial practical experience of measuring instrument circuits: salary in the region of £450-£650 p. apcording stating full details. to the Chief Encineer Furzehill Laboratories. Ltd.. Boreham Wood Herts
McMICHAEL RADIO. Ltd.. require senior division laboratory at Slough: training and experience in the field of applied electronics (including communications and experience of Working with Government Dedartments are the age and fuli details of training, qualifications and experience. to the Chief Engineer. Equipment Division. McMichael Radio. Ltd.. Slough.
Bucks.
BELLING \& LEE, Ltd.. Cambridge Arteria: B Rd. Enfield. Middlesex. require research assistants in connection with work on electronic
components, fuses, interference suppressors and components, fuses, interference suppressors and fevision aerials: applicants must be graduates of the I.E.E. or possess equivalent qua.ifications: salary will be commensurate with previous ex. perience: 5-day week: contributory pension
scheme.-Applications must be detailed and con-
cise, and will be treated as confidential.
SENIOR mechanical designer; two or three D vacancies exist in our electronics division for senior desifn draughtsman on electronic equipment: candidates should Certificate standard and should be capable of leading a desion team in this class of work; salary $£ 650$ per annum upwards accordine to qualifications and experience, applications should include full details of experience to date and may be forwarded Murbhy Radio. Ltd. Wersonne Garden City. 「9883
DECCA RADAR, Ltd., requires a senior enDower centimetric radar equipment previous power centimetric radar equpment oferg receivers and A.F.C. systems. is required: a good salary. commensurate with experience, will be offered to the right man, for whom there are
excellent prospects in this progressive and expanding company.-Please apply. kiving full details of experience and stating salary reB.B.C. requires engineer in Radio Section, B Research Department, Kingswood, Surrey, normal starting salary £795 (may be higher or annual increments to £1,065 max.: degree electrical engineering or physics with sound mathematics essential; duties: theoretical and practical investigations on radio frequencies. reterence transmitting aerials and R / F measurements. experience of which essential experience transmiters and receivers desirable. 7 . 1.1388
VACANCIES are available in the transmission deparment for: (1) development enfineers. experienced in the design of mulitchannel carincluding amplifiers. filters and radio: (2) equip. ment engineers, with such knowledge of modern line communication practice as will enable trem. after training in the company's methods, to prepare detalled specifications of quipment requirements and to develop arrangements for rack mounting of the apparatus: (3) draughtsmen to work with the engmeers, preferably industry; the positions available are permanent. on full established staff status, with contributory pension fund and usual staft conditions. Please write to Personnel Manager. Automat Telephone \& Electric Co., Ltd. Liverpool. ${ }^{7}$ giving full details of experience, qualifications.
age and appraximate salary sought.
[1359

GALPIN'S

ELECTRICAL STORES
408 HIGH ST., LEWISHAM, S.E.13. Tel.: Lee Green 0309. Nr. Lewisham Hospital.

TERMS : CASH WITH ORDER. NO C.O.D.
All goods sent on 7 days' approval against cash EARLY CLOSING DAY THURSDAY
MAINS TRANSFORMERS (NEW), suitable lor spot welding, input 200/250 volts, in steps of 10 volts, output suitably tapped for a combina ton of either $2 / 4 / 6 / 8,10$ or 12 volts $50 / 70$ amps 95/- each, carr. $7 / 6$.
MAINS TRANSFORMERS (NEW), 200/250 volts input in steps of 10 volts, output 0, 6, 12, 24 olts 6 amps, $42 / 6$ each, post $1 / 6$. Another as above but $10-12$ amps 55 - each, post $1 / 6$: another as above, but $25 / 30 \mathrm{amps}, 75 /$ - each, carriage $3 / 6$ another, input as above, output $0 / 18 / 30 / 36$ volts 6 mps, $47 / 6$ each, post 1/6.
EX-RADAR MAINS TRANSFORMERS, 230 volts input 50 cycles I phase, output 4,500/5,000 volts approx. $80 \mathrm{~m} / \mathrm{amps}$. 6.3 volts 2 amps, 4 volt $\frac{3}{4}$ amps, 2 volts 2 amps, these transformers are new immersed in oil, can be taken out of the oil and used as television transformers giving ourput of $10 \mathrm{~m} / \mathrm{amps}$, overall size of cransformersseparately $5 \frac{1}{2} \mathrm{in}, \times 4 \frac{1}{2} \mathrm{in}$. $x 4 \mathrm{in}$. and 3 in . $x 3 \mathrm{in}$. $x 2 \frac{1}{2} \mathrm{in}$., price 5- each carriage paid
MAINS TRANSFORMERS (NEW), input $200 / 250$ volts in steps of 10 volts, output 350/0/350 volts, $180 \mathrm{~m} / \mathrm{amps}, 4$ voltes $4 \mathrm{amps}, 5$ valts 3 amps 6.3 volts $4 \mathrm{amps}, 45$ - each, post $1 / 6$; another $350 / 0 / 350$ volts $180 \mathrm{~m} / \mathrm{amps}, 6.3$ volts 8 amps $0 / 4 / 5$ volts 4 amps, 45 - each, post 1/6; another $500 / 0 / 5 C 0$ volts $150 \mathrm{amps}, 4$ volts 4 amps C.T. 6.3 volts 4 amps, C.T., 5 volts $3 \mathrm{amps}, 47 / 6$ each post $1 / 6$; another $425 / 0 / 425$ volts $160 \mathrm{~m} / \mathrm{amps}$ 6.3 volts 4 amps, C.T. twice 5 volts $3 \mathrm{amps}, 47 / 6$ each, post $1 / 6$
TRANSFORMERS SPECIALLY MADE TO ORDER, delivery 72 hours from date of order Please let us quote you
MAINS TRANSFORMERS, $200 / 250$ volts input, output a combination of $6,12,18,24,30$ and 36 volts at 6 amps, $45 /=$ each, post $1 / 6$.
METERS, Moving Coil, 0 to 14 amps, $18 / 6$ each Ditto, Moving Iron, suitable for A.C. 0 to 30 amps 25/- each. Another moving coil, 100 to 250 amps D.C., 35 - each, all 4 in . scale. (Others in stock lease state your requirements.)
$12 / 24$ VOLT RECTIFIERS at 4 amps., with suitable Mains Transformer, 200230 volts input. 55/- each, except $12 / 24$ volts.
MAINS TRANSFORMERS, input $180 / 250$ volts, output $435 / 0 / 435$ volts, 250 m /amps, 6.3 volts 10 amps, 6,3 volts 8 amps, 6.3 volts 8 amps volts 6 amps, $65 /-$ each ; another, input as above volts 2 amps, 45/- each.
SMOOTHING CHOKES, 4 henries, 250 mamps, D.C. resistance 120 ohms, $12 / 6$ each CONDENSERS, 0,1 mid., 6,000 volts working.

ARGE STUD TYPE DIMMER RESIST ANCES, 10 ohms, $9 / 18$ amps, 32 studs, 35: 3 KILOWATTS DOUBLE-WOUND VOLTAGE CHANGER TRANSFORMERS 10230 volts or yice-versa, as new, weight approx $00 \mathrm{lbs}, \boldsymbol{\epsilon 1 2} 10$ - each, carriage forward
ELECTRIC LIGHT CHECK METERS, useful for subletting, garages, etc., all for $200 / 250$ volts A.C. mains, 5 amp . load, 19/- each; 10 amps $22 / 6 ; 20 \mathrm{amps}, 27 /-$; $25 \mathrm{amps}, 32 / 6 ; 40 \mathrm{amps}$ $38 / 6$; $50 \mathrm{amps}, 46 / 6$; and $100 \mathrm{amps}, 57 / 6 \mathrm{each}$ all carriage paid
6 or 12 VOLT RECTIFIERS at 4 amps output complete with suitable transformer, 200/230 MAINS TRANSFORMERS, 200-250 volt input, output $400 / 0 / 400$ voits, 280 mamps, 6.3 v. 8 a., 2 v. 3 a., 5 v. 3 a., 4 v. 2 a. 4 v. 2 a. the last two heaters insulated at 8,000 volts, $85 / \mathrm{m}$ each: another $200 / 230$ volts input output en 9.18 volts at 4 amps, 25/- each, post I// D.C. MOTORS, 230 voles, . 3 h.p., 3,030 r.p m in good condition, $\mathbf{£ 3 / 5}$ - each : ditto Fan Motors 230 volts D.C., $20 /-$ each ; 110 volts D.C $17 / 6$ MAlN
MAINS TRANSFORMERS, input 200250 volts, output $45 / 50$ volts, 70 amps, suitable for arc welding, $t 15$ each; another 70 volts, 50 amps 15 each.
Ex-W.D. U.S.A. HAND GENERATORS less winding handle, output 425 volts at $110 \mathrm{~m} / \mathrm{a}$ at 6.3 v., $2 \frac{1}{2}$ amps, complete with smoothing 30/- each, carriage 2.6
ROTARY TYPE RESISTANCES, stud S/arm type 10 ohms 3 amps, $17 / 6$ each. (Other types in stock, please ask for quotation.)

THE \quad ITA YES COMPANY RADIOGRAM CHASSIS

RG 200. Combining advanced design with a high standard of construction the RG 200 is making many new friends. The independent bass and treble controls give a smooth and continuously variable adjustment over the audio range. The output is eight watts, and the price $£ 26$ 10.

The ever popular RG/135 7 valve chassis is 818/15/- and the RG/120 5 valve chassis is $£ 15$.

Full details gladly sent on request.
299, WIGHTMAN ROAD, LONDON, N.8. Mountview 6864

MORLEY TRANSFORMERS

QUALITY P.P.O/P TRANE, 20 w.. sipper Silcor lame.
 Prumary bip. to individual requirements. Fully
 10/8. 241 H . $150 \mathrm{~mA}, 126$. $5 \mathrm{H} .250 \mathrm{~mA} . .15 /-$
 5 v. 2 a.. 6.3 v. 4 a.. ditto 300 ... ditto 250 va. $21 /-$
Quotstions for apecials and rewinds by return. Hart

2, PAWSONS RD,, W, GROYDON, THO 1665

HYNDBURN-
TAPE RECORDER COMPONENTS enable you to build
A TAPE TABLE
for under
£ 13
OR A COMPLETE PORTABLE RECORDER
for
£ 30
Details from
HYNDBURN ELECTRONICS LTD.
2 \& 4 Croft Street. Accrington,
Phone: Acc. 4526.
LANCS.

ENGINEERS:

\because ENGINEERING OPPORTUNITIES, "OMA Must reat iest wav to Pass A.M.I.Mech.E. A.M.I.C.E.
144 PAGES

 Civil. Anto., Aero. Radio, etc, 'Building, etc. If yon're varning
lesa thaut $\%$ week, tell
 and write ior your copy OPPORTUNITIES

B.I.E.T.

jis siakespeare Hse.
$l_{1}-19$ stiantord Place itiord Place

PROJECT SITUATIONS VAGANT

Prevelop engineers (aged 28/38) required for and radio components by well-known manucal turer; experience of by welr-known manufacmanufacturing methods essential, academic or protessional qualifications advantageous: the positions are permanent and pensionable and salary commensurate with qualifications.Applications (which will be treated in confhe salary range details and an indication of the salary range expected to Box 7521 . Adver-
tiser's stafl are aware of the vacancies. $\quad 11991$ D RaUGHTSMEN; The English Electric Co. Duta have vacancies at therr wivel pood experience in the layout of power installations. wirng diakrams and switchgear: pensionable and progressive positions with excellent opportunities for promotion are offered to men with initiative: housing assistance for successful applicants and traveling expenses for interage oualifacations and experience, auoting ret 140B. to Central Personnel Services. Marcon

House. $336-7$. Strard. London. W.C. 2 . $1998{ }^{3}$ THE GENERAL ELECTRIC CO.. LTD. Junior Electronic Development Engineers for work on Guided Weapons and like prolects. particularly in the field of Microwaye and Pulse Abplications; Mechanical Development Engineers. Designer Draughismence and Draurntsmen. preerably with experience of radar tope salary according to age. cululifications and experience; houses available to selected senior | stati-Apply by letter stating age and experience |
| :--- |
| to the Personnel Manager (Ref. R.G.). |
| 0259 |

MURPHY FabIO. Ltd. have vacancies for Me two or three senior enpineers to lead applications are invited from men with engineering or physics derrees or equivalent Radar navigational aids. V.H.F. communications receivers and low-power transmitters, salary upwards of f650 per annum accordine to qualifications and experience: candidates prepared to bring energy and drive to their work may addiess their applications in confidence to Welwn Garden City
 "adio stations: suecial training courses for keen adio stations; special training courses for keen
mechanics with basic qualifications: interesting work in progress providing e ectronic aids to navigation, prospect of permanent pensionabie
rosts: rates of pay (ínondon) from £290 per ,osts: rates of pay (iondion) from £290 per
inum at age 19. to $£ 385$ at 25 , rising. subject to quaitying test to 8475 . plus, pay addition of iged sighty ower or provinces: candidates Aaintenance of radio or radar' equipment shou'd apply to Ministry of Labour and National Service. Barnsbury Rd., London. N.1. quoting
Order No. 576. D ECCA RADAR Ltd., invites applications oin the company in its extensive work in a wide field of nicrowave link and radar develonment; the company offers excellent slating Salaries and first rate opportunities for men to exploit their initiative and to rise rapidiv
to responsible posts: Graduates without in. dustrial experience who are premared to undertake intensive training are also invited to aoply for funior posts: applicants must be of British nationalify Apoly in writing. quoting
ref. Mw to Research Director. Radar Laboraref. MW to Research Director. Radar Lahora-
tory. 2, Tolworth Rise. Surbiton. Surrey. 0245
OLD-ESTABLISHED British firm in Bangkok requare sales and se vice engineer for theil Cadio deparment, principals handle the distriAmerican range of domestic radio receivers, commerclal and broadcast transmitters and allied equipment applicants win be required to take charge of the department and must
be fully conversant with the entire range of broadcasting equipment; a knowlerige of telebroadcasting equipment; a knowledige of tele-
vision, both transmitting and receiving, will be to the applicants advantage: applicants up to
35 years ot age will be considered. Write with 35 years ot age will be considered.-Write with
 A VMIRALTY Royal Naval Scientific Service ${ }_{\text {V }}^{\text {Dacies }}$ Assistant Experimental Officer's in London area and Gloucestershire. Candidates should be engineers or physicists with a strong interest or research experience in electronics or telecommunications, line and radio. Candidates, British subjects, must possess one of forming physics or mathematics, graduate membership of an appropriate professional institution, Higher National Certificate. Final certificate of a 5 -year grouped course in a relevant subject at City \& Guilds or comparable institutions. Higher Shool Certiticate with maths, or Science as principal subject o: equivalent qualification. Experimental officer's at least 26 years of age. tant Experimental Officers at least $171 / 2$ yeurs £274-£607. Rates for women and post in Gloucestershire somewhat lower. Starting salaries above minima may be granted according to age and experience. All appointments unestablished, but opportunities to compere for permanen posts will occur from time to timeEcient fic Register (K) 26 King St., London. S.W.1. Quosing Al30/53/A. Closing date July

AMPLIFIER XL/AC (1)

 (HIGH GAIIV)Incorporates Volume and Tone Controls, Latest Miniature Valves, Providing $4 / 5$ watts output. For use with 2 in 15 ohm speaker. A.C. mains 200-250 volts. Size of chassis $8 \times 6 \times 2 \frac{1}{3} 10$. Tested and Ready for use. Price Ló/i0/. Plus 5/- Postage and Packing.

NEW CHARGERS

(Metal Rectifier Type) 200-250 v. A.C. in, 72 v. D.C. out, at 15 amps . Price $\mathbf{\$ 2 0}$.

Let Us Quote You for RADIO COMPONENTS, VALVES. Also Press Tools and Jigs ior the radio trade.

TELEKIT SUPPLY CO.

Chantry Lane Works, Chantry Lane, Bromley, Kent. RAV. 5845

I.W.F. RADIO PRODUCTS

for "VIEW MASTER," "TELE-KING," WIDE ANGLE SCAN, components, valves, cabinets, TRUVOX TAPE DESK, etc., everything for the Service Engineer
Wholesole only. Send 3d. for our list.
TATLER CHAMBERS, THORNTON ROAD,
BRADFORD, Yorks. Tel.: 24038

QUARTZ CRYSTAL UNITS

Type B 7

111
The type B 7 'init is mounted in the standard B 7 G valve envelope and is hermetically sealed and fully evacuated.
Available for the frequency ranges from $100 \mathrm{kc} / \mathrm{s}$. to $500 \mathrm{ke} / \mathrm{s}$. and from $3 \mathrm{Mc} / \mathrm{s}$. to $16 \mathrm{Mc} / \mathrm{s}$. Gold electrodes applied by cathodic sputtering give permanence of calibration. Normal adjustment accuracy 0.01%. Max. adjustment accuracy 0.003%.
Early delivery can be given of most frequen-
cies, and we will be pleased to quote for
your specific rezuirements.
THE QUARTZ CRYSTAL Co. Ltd. 63-71 Kingston Road.
NEW MALDEN, SURREY
Telephone
MALden 0334
QUARTZCO NEWMALDEN

IWIRELESS SUPPLIES UNLIMITED

264-266, OLD GHRISTGHURGH ROAD, BOURNEMOUTH, HANTS.

Phone: Bournemouth 4567.
Telegrams: Limitrad, Bournemouth.

NEW G.E.C., S.T.C. AND " WESTA LITE; SELENIUM RECTIFIERS. Latest Current Products. NOT Surplus.
 CURRENT PRICE LIST

A SITUATIONS VACANT MINISTRY requires civilian instructors, A Class I. radio fitter, for temporary posts. with prospect of permanency, at R.A.F Radio set): qualifications at least 5 years practical experience and ability to instruct: trade test before entry: pay is $\mathcal{L} 480$ at 26 rising to $£ 597$. Apply to (K. 1) Air Ministry. S.5(g), Cornwa-1
House Stamfor St.. London, E .1. 1375 Development engineer requited: experiadvantage, excellent opdortunity for man with
technical and industrial experience to broaden experience with well-established and well-known company; near town centre and all amenities and within easy reach London-Apply Marconi
Instruments, Ltd., Longacres, Hatfild Rd. St. Albans.
E of Supply, London Headquarters, to supervise the development by industry of electronic navigation ands for Service use: experience of and a knowledge of current navigation eduip. ment is desirable; auals. minimum or Higher School Cert. (Science) or equivalent, but diegree
or H.N.C. in enfineering may be an advantage. or H.N.C. in enfineering may be an advantage:
sala:y within range experimental officer min. age 26). £681-£838: women somewhat less: M.L.N S , Technical and Scientific Register
 $\mathbf{S}^{\text {ENIOR }}$ Ministrs of Supply trials Wing Outstation. Aberporth, South Wales, for control of operation and maintenance of electronic instruments and supervision of techmical work, experience
with radio or radar equipment. preferably used for measurement of physical quantities. desirable; liking for field work essential; quals: equimum of but H. Higher School Cert. (Science) or degree in. elec. enc. may
in an range $£ 927$ \& $£ 091$ min. age 35 ; salary within Application 1orms from Mi.L.N.S. Techncal
and Scientific Register (K) 26 , King St.. London. S.W.1, quoting D 222/53A. Closing date July 14. 1953.
$\mathbf{R}^{\text {ADIO }}$ assistant able department; junior technical R assistant abie to assist in as many as possibie ments, construction of prototypa apparatus. preparation of reports. technical records, etct. to use netal and wood-working tools with some derree of accuracy is desirable and a knowledge of typing could be advantageous: good education of matriculation standard and some know iedge cants would be considered if possessing typing experience and good training in ad:o theory
(e.g., ex-W.R.N.S., etc.).-Full details of age. education, experience and salary required to Box No. 544, c/o Era Publicity, Ltd., 7, Fitzroy
SG.. London. W.1.
A VACANCY exists with a subsidiary of Britigh operating in Gloucester, for a television engineer. mainly for servicing television receivers. but ance and instaliation of television re'ay dis25 years of age and should have had experience in handing and servicing television receivers of associated equibment; applications shoutd be
made in writing to Link Sound and Vision Sermade in writing to Link Sound and Vision Ser-
vices (Gloucester) Ltd, 28, Southgate Street. viewed in London should apply to British Re ay Wireless and Television Ltc.... 6 Gilspur St. top left-hand corner.
The PLESSEX COMPANY have vacancies at draughtsmen of senior and intermediate grades for development work on components and mations equipment: these vacancies communications equipment, these vacancies occur as a permit a substantially increased interest in the design of circuits and components for specific applications; all positions are permanent and pensionable and the expansion now in progress
offers good prospects of advancement; attractive offers good prospects of advancement; attract to
initial and progressive salaries are offered to initial and promresive salaries are offered to
men who are qualified by reason of educational atainment ortactical whe in confidence and should be addressed in the first instance, quoting reference WW/ED. for the attention of the Personnel Manager. The Plessey Company.
Limited. Vicarage Lane. Ilford. Essex. 1347 M INISTRY OF SUPPLY requires technical Worough. to prepare instructional publications for services on all aspects of ground/airbome centimetric radar or radio communications equipment. Qualincations: British of British parents: recognised eng. apprenticeship and Elec.E. or exemping qualus.: altemativelp wide experience in Jesponsibe tech. position prefer-
ably holding H.N.C. or egulvalent would be conably holding H.N.C. or ectuivatent would be considered; appropriate experience, either research
and development in industry or operation and servicing in Services essential, experience in salary within $£ 592-£ 949$ according to age qualns. location not estabiished but opporquaities to compete for establishment may arise
-Application forms from M.L.N.S., Technical Application forms from M.L.N.S., Technical

『EF-jitivut

SELENIUM METAL RECTIFIERS, Full
ange in stock as per our previous adverts We can also supply rectifiers to individual equirements from m / a to amps., H / W ave F/Bridge or 3 phase. Speedy delivery, competitive prices, fully guaranteed. Prices and ist on application. Trade supplied.
MORSE KEY, TYPE 'J,' made in U.S.A. a really welt-made key for amateur or profes sinaluse, 76. P.p.
R.F. 25 UNITS, in excellent condition, 20/-

I2in. SPEAKER CABINETS, with carrying handle, detachable back, handsomely finished. Complete with lead compartment at bottom. Suitable for use as a portable amplifier and speaker cabinet. Brand new. Size $15 \mathrm{in} . x \mathrm{l} \mathrm{in}$. x 13in. Price $£ 2 / 19 / 6$. (List price 6 gns.). P.P. 5/-
BATTERY CHARGERS. Ex-Govt., perfect condition, 200/250 v. A.C. output to charge 2-6-12 vit 5 amps. Complete with Ammeter, €4/19/6, carriage 5/
INTRODUCINGTHENEW'SOLON ' IいSTRUMENT MODEL ELECTRIC SOLDERING IRO.V. Weight $3 \frac{1}{4} \mathrm{szs}$ length 9 in. Suitable for $220 / 240$ v. 25 watts. Best instrument on the market, only $19 / 6$ MULTI-PURPOSE TRANSFORMERS. ideal for charging, etc. Prim. 200/250 v., 50 cycles. Sec., $38 v-86 v$. in $3 v$. stages at 400 watts or $30 \mathrm{v}-19 \mathrm{v}-11 \mathrm{v}, 3.8 \mathrm{v}$ and 3 v . at 10 amps. Brand new, limited number available
Price $\mathbb{C} 3$, carriage $2 / 6$
VARIABLE VOLTAGE REGULATOR TRANSFORMERS. Input 230 v. A.C. at 21 amps. Output 57.5 in 16 equal steps to
230 v at 21 amps. Ex-Govt. In perfect condition, fl5, carriage 5/\%
AUTO TRANSFORMERS. 21 amps. $110-125$ v. 200 v. -240 v. Perfect condition, 66/10/-, carriage 5
WELDING TRANSFORMERS. 230 Prim. 50 cycles. L.T. tapped, $11 \frac{1}{2}$ v. $133 \frac{1}{1}$ $60-70$ amps., $\epsilon 3 / 19 / 6$. P.P. $5 /-$. Or $13 \frac{1}{2}$ PHILIPS NEON TESTER. Screw-drive type, $100 / 500$ v. A.C./D.C., $5 /$. P.P. 6 d .
HELLERMAN TOOLKITS. T.K. 2 com plete with tool, oil, sleeves, 17/6. Tool on'y
MAINS INTERFERENCE SUPPRES SORS. Type No. 5C/870. suitable for radios motors, etc., size 4 in . $\times 4 \frac{1}{2} \mathrm{in}$. $\times 2 \mathrm{in} ., 4 / 11$ MOVING COIL METERS-2 $\frac{1}{2}$ in. FLUSH MOUNTING. $0.10 \mathrm{~m} / \mathrm{a} ., 0-30 \mathrm{~m} / \mathrm{a} . .0 .2 \mathrm{CO}$ AMPLIFIER TYPE 582 Brand new containing $45 \mathrm{~m} / \mathrm{c}$ Pye Strip, ideal for T.V containing ${ }^{\text {limited number oniy, } \mathbf{E 5} / 15 /- \text {. P P. } 2 / 6 \text {. }}$
AMERICAN HIGH FREQUENCY SIGNAL GENERATORS. Type 122 A. Com plete, brand new, I 10 v . Input. $50-230 \mathrm{~m} / \mathrm{cs}$ $8.150 \mathrm{~m} / \mathrm{cs}$., $\mathbf{6 2 0}$, carriage 5
AMERICAN DYNAMOTOR, TYPE P.E 103. Complete with stand and leads, brand

MULLARD OSCILLOSCOPE, one only type GM3152/65, secondhand, completely overhauled, in perfect order, $\mathbf{x} 28$.
EXTENSION SPEAKER IN METAL CABINET. $6 \frac{1}{2} i n$. Goodmans heavy magnet ALUMINIUM SHEET, UNDRILLED 16 S.W.G. Sizes available: $12 i n . \times 12 \mathrm{in}$ 24 in . x 12in., $24 \mathrm{in} . \times 24 \mathrm{in}$. $24 \mathrm{in} . \times 36 \mathrm{in} .4$ persq. foot, P.P. 9d.
6in. G.E.C. FANS. 24 V. D.C. Brand new OSRAM PHOTO-CELLS. C.M.G. 22

brand new, ${ }^{2}$ SPEAKERRS

10in. P.M. 3 ohms Speech coil. 25/-. P.P. 1/6 Bin. P.M. 3 ohms Speech coil, 15/6. P P $1 / 6$ 5 in. P.M. 3 ohms Speech coil, $15 / \mathrm{F}$. P.P. 16 2 in. P.M. 3 ohms Specch coil, 18/6. P.P. 9 d $2 \frac{1}{2}$ in. P.M. 3 ohms Specch coil, 186 . P.P. 9d
3 in. P.M. 3 ohms Speech coil, 156 . P.P. 9d $3 \frac{1}{3}$ in. P.M. 3 ohms Speech co
VARIABLE PESISTORS:
$\begin{array}{lll} & 52 \text { ohms at } 2 \text { amps., twin tube ……e. 22/6 }\end{array}$ 50 ohms at 50 watt, on porcelain formers $7 / 6$ 25 ohms at 100 watt, on porcelain formers $15 / 6$ 5 k . at 50 watt , on porcelain formers.
lo0K. at 25 watt, totally screened W/W.
Type CV5
15 LITTLE NEWPORT ST., LONDON, W.C. 2 GERrard 6794/1453

Quickly and Accurately Forms
Angles, Channels, Sections, Boxes, Lids, Trays, Tanks, Chassis Brackets. Clamps, Clips, Shrouds, Chemical, Electronic and Electro Medical apparatus. Servicing Engineers, Hospitals, Universitics and ltesearch Workers.

For 6 page Folder write to :-
A. A.TOOLS (w)

197a Whiteacre Rd., Ashtonzu-Lyne

RADIO G 200 OFFERS

 500 c.p. Ediswan POINTOLITE equipment. A.M. ref. 9/559. Complete with Lamp. Price 65.Generator Type 320.' Permanent magnet input 24 v . to 200 v . 50 mA .; 12.6 v . 1.2A. A.M. ref. IOK/1046. Price 35/-

THE
ELECTRICAL INSTRUMENT REPAIR SERVICE
329 Kilburn Lane, LONDON, W.9. Tel. LAD 4168

RSITUATIONS WANTED ADIO Service Engineer, age 30 . seven years post-war experience, hmited television Murphy, Pye, cossor, drive, seeks post. Ply-
mouth preferred, available September.-Box mouth preferred, avallable september.-B10
7689 R ADIO BUSINESS OPPORTUNITIES $\mathbf{R}_{\text {ADIO }}^{\text {and electionic engineering organisa- }}$ development of prototype to Gov. Dept. Stan-dards.-Box 7047
BUSINESS FOR SALE AND WANTED

BUSINESS FOR SALE AND WANTED
ADIO/TV retail business with living a
commodation lead 5 miles radius of ke
\qquad R commodation read. 5 miles radius of ken sington. N.W. London Dveferred: good premium.-Coynes Store. 105. Talbot Rd. Paint paint cellulose, etc.
PainT spraying handbook $3 / 6$, wost free, cellulose and synthetic paints and all spraying requisites supplied; catalogue free-Leonard
Brooks, 53. Harold wood. Romford.
[0207 TECHNICAL TRAINING
CITY \& Guilds (Electrical, etc.) on ". no pass no fee" terms; over 95% successes. to
full details of modern courses in all branches of electrical technolosy send for our 144 -pase hand book-free and post free--B.I.E.T. (Dept. 388A) 17. Stratiord Place, London, W.1. INDUSTRY needs trained men: send for free brochure giving details of our fome stud Courses in radio television and all branches A.M.Brit.I.R.E. City and Guilds Telecommunications. R T.E.B. and other protessional examBritan's traigest with the conconic industry.-Write to EM.I. Institutes Postal Division. Dept. WW33 43 Grove Park. Rd. London. W. 4 iAssoctated
with H.M. V.).
TUITION
Nothing succeeds like success! what we
have done a thousand times we can do again have done a thousand times we can do again
for you-see the B.N.R.S. advt. page 117 [0172 $W^{\text {IRELESS operating: a attendance and postal }}$ courses. Stamp for reply to Manager. The Wireless School, Manor Gdns., London. N. 7 .
$\mathbf{F}_{\text {ULL.TIME }}^{\text {Courses }}$ for P.M.G. Certs unications. Radar Man -Technical College. Hull.
$\mathbf{S}^{\text {EE }}$ the world.-Radio officers urgently re training fees e train most in shortest period scholarships available; boarders accepted: $2 d$ stamp for prospectus from, Britain's leading col-
lege.-Wireless College, Colwyn Bay. lege.-Wireless College, Colwyn Bay. City and A Guilds. etc.. on : no pass no fee ", terms: over 95% successes: for details of exams and courses in all branches of engineering. building. B.I.E.T. (Dedt. 387B), 17. Stratford Place. W.1.

Wireless Telegraphy. - Merchant Nay onters to youths 151 , upwards when qualified lucrative positions as radio officers.-AvDly ham Rd., London. S.W.9. Also postal courses in theory of wireless for P.M.G. Certificates. and
Amateur Transmiting Licence
THE Institute of Practical Radio Engineers T have available home study courses in every phase of radio and television engineering specialising in the practical training of appren-moderate.-The Syllabus of Instructional Text may be obtained post free from the Secretary.
IP E . Fairield House. 20. Fairield Rd.. I.P.R.E. Fairiield House. 20. Fairtield Rd.
Crouch End. London. N. 8.

THERE is a great future for qualified radio
1 television and electronic engineers: this is gour oportunity to train for a well-vaid career. E.M.I. Institutes. who are associated
with H.M.V.. Marconmphone. etc. offer a 3with H.M.V Marconmmone. etc. onger a (inc. 1 year. with E.M.I. factories) commencing Ausust 2 ath; on successful completion. emplov-

FREE! Brochure giving details of Home Study branches of Electronics. Courses for the hobby enthusiast or for those aiming at the A.M.Brit.I.R.E., Citv and Guilds Teiecommunications, R.T.E.B. and other professional ex-
aminations. Train with the College operated by aminations. Train with the conege operated by ate fees. Write to EM. I. Institutes. Postal Division. Dept. WW28. 43. Grove Park Rd., Lon-
don. W. (Associater with H.M.V.) don. W.4. (Associater with H.M.V
TOROIDAL winding capacity, precise limits N - Bel, Marlborough Yd.. London. Archway
FLECTRONIC eqnt. nade to order, wiving L assy, contractors. prototypes developed K.A.E. Mfg. Co., 377. High Rd., London. N. 2

ELECTRONIC sub-contracts and prototy E light assembly. wirins testing to specification: priority to Government Work, Encuimes to office, T-H Products. 92. Leathwaite RA.
$\begin{aligned} & \text { S. } \\ & \text { S. } \\ & \text { Bat }\end{aligned}$ Mnufacturers.-As specialists in all
types of sheet metal work for the radio and electrical trade we are able to guote you very keen prices for a high quality, lob.-Inten-
Ealite Sign \& Fixture Co.. Ltd.. 89, Leopo!d St salite Sign \& Fixture Co. Ltd.. 89, Leopo!d St.

MAGNETIC TAPE RECORDERS \& SOUND EQUIPMENT

PORTABLE TAPE RECORDER, mode D/8, 8 -valve 10 -watt dual channel amplifier, with Truvox Tape Unit, 8in. L.S. ... $£ 6500$ RECORDING AMPLIFIERS
TR/DS, 8 -valve 10 watts.
524100 TR/DT, 6 -valve 12 watts........... $£ 1800$ TR/4, 4-valve 4 watts $\mathbf{f 1 2} 12 \quad 0$

CONCERT AMPLIFIERS
AC/15, Mic. 8 gram, 5 v. 12 w.... $£ 14140$ AC/I8, super model, $6 \mathrm{~V} .15 \mathrm{w} \ldots \ldots 16 \quad 16 \quad 0$
We specialise in audio equipment of every description. Obtainable direct, or from agents everywhere. Trade and Export enquiries welcomed. Cotalogue upon request (3d.)
G. L. ELECTRONICS,

16 Pattison Road, London, S.E. 18. Woolwich 0387.

IOCIINOD makers of Fine Cabinets

and woodwork of every description for the Radio and allied trades
LOCKWOOD \& COMPANY
Lowlands Rd., Harrow Middlesex. Byron 3704

quality television components
 Scanning Coils
 F/ 10 Kv. R.F. E.H.T. Units
 Line dy -back E.H.T. Units SEND FOR ILLUSTRATED LISI

HAYNES RADIO Ltd.
Queensway Enfield Middlesex

SAMSONS SURPLUS STORES

ADMIRALTY INTEGRATORS, TYPE A/S91, incor porating very tine galpo, movement. $50 /-$ P.P. $2 / 6$. ADMIRALTY SEND-RECEIVE KEY TYPE A/S5\%. Operatis from 24 volte D.C. 22/6. P. P. $2 / 6$. Brand new in maker's cartons. £15. MASTER VOLTMETERS. $0-20$ volts A.C. 50 cy SPECIAL OFFER: S.T.C. BATTERY GHARGERS
 incorporating selcuism rectitier, anmeter, fuses tine and coarse switching. Built-in grey metal cases, measurimg ift. 10 in . x ift., 3m. x 10tin. supplied
brand new at a fraction of the maker's price, $\mathbf{8 2 \% / 1 0 / =}$ brathi new at
Callers only.
DOUBLE ANGLE SERVO UNIT ASSEMBLY for humb sight computer T'।, comprising 27 volt llouble ended geared motor and reversing assembly. Braud new in maker's cartons, 32
SLIDING RESISTANCES. 3.4 ohm 1% amp $22 / 6$. 5 ohm 10 amp. 22/6. 1 ohm 12 amp. 12/6. 50 ohi tamp. 10/6. 20 ohm 7 to 1.5 amp. with geared drive 16. ${ }^{2}$
\qquad 169/171 Edgware Road
London, W.2. Tel.: PAD. 7851
125 Tottenham Court Road, W.I. Tel: EUS. 4982

All orders and enquiries to our Edgware Road branch, please. This is open all day Saturday.
'AUTOMAT" HOME CHARGERS, CHARGER KITS, SELENIUM H.T. \& L.T.RECTIFIERS
New Goods with Full Guarantee Our selenium rectifiers are new, not reconstructed Gov't. surplus material.

"AUTOMAT" HEAVY DUTY HOME CEARGER. weight 8illos., virtmalty battery or radin cells, geleniun rectification, 12 months' genuine guarantee, foulproof operation, damp, proof, strl. mordel for A.C
2 amp. $59 / 6$, p. \& p. 28 6\%mp. $115 /-124$ v. 5 amp £11.
FOOLPROOF CHARGER KITS. Really trouble free and reliable with full data sheet and circuit, standard kit $12 \mathrm{v}$.2 amp. selenium rectitier, 45 watt impregnaten
transformer, ballast bull ior 2 v .6 v . 12 v, charger, transformer, ballast bull ior $2 \mathrm{v} .6 \mathrm{~F}_{\text {. }}, 12 \mathrm{v}$, charger,
$38 / 6$, post $1 / 8$, or with handsome ateel case, 52 38/6, post $1 / 8$, or with handsome steel case, $52 /-$ post $2 /-$, senior model $12 / 14$ v. 3 amp . Westalith rect. post $1 / 10$, or with our latest desiga steel case, $58 / 6$ post $2 / \sim$, also 12 ₹. 4 amp. rect.. 75 watt trans., hallast bulb for 6 v. $/ 12 \mathrm{~F}$. charger, $55 /$-, ditto but 5 amp s.T.C. rect. and 85 watt trans., with ballast bulh HEAVY DUTY ELIMINATOR
elenitum DiY Latge trans. selenium h.t. and i.t. trickle charge rects., electrolytic 15 plats 19, hanilsome steel case, for $120 \nabla .20 / 30 \mathrm{~mA}$ extra, $37 / 6$, post $1 / 6$, or less case, $32 /-$
-m., 25 mm . and ma. reciners varions voltages, bridge, h.w. and c.t. types, H.T. and L.'.' new stock, not surn h118, 2 v. $/ 6 \mathrm{v}$
t amp. h . wave, $4 / 10 ; 12$ v. 1 a.h. wave, $6 /-$, post find. full wave 6 v. 2 anıp, g/-; 12 ₹. 26 amp., $15 / 6$ $12 / 15$ \%. 3 a. to 3.4 a, $16 / 6$, all post 8 d . ; 6 v . 4 ampo 16/6; 24 \%. 1.5 a. $15 /-$; 12 v. 5 amp.. 27/6;2+ v all post ild. $11 . T$. recto., smanll apace selenium, new, 250 v. 60 mA ., $7 / 6$, post $5 \mathrm{~h}_{\mathrm{o}}$; $250 \mathrm{\nabla} .120 \mathrm{~mA}$ bridge, $14 / 6$, nost 8 d . ; 250 v .200 mA . bridge, $24 /-$ ditto 300 mA ., $34 / 6$. Elim. rect. $135 \mathrm{v} .30 \mathrm{~mA} ., 6 / 6$

CHAMPION PRODUCTS
43 Uplands Way, LONDON, N. 21 Phode LAB 4457

(avacta

TRANSFORMERS

of all types up to 25 KVA for Single or Three Phase operation, Phase Conversion, etc

MAINS

Output and Special Purpose Transformers for Radio Equipment, Chokes, etc.

COILS

for Contractors E.M. Brakes, Air Valves, etc., and Coil WINDINGS for all purposes.
for A.C. and D.C. Operation
A.I.D. Approved
W. F PARSONAGE ECO LTO inducta morks
MARK RD-BLOXWICH.WALSNLL TELEPHOME BEOX 66464

BOOKLETS "How to Use Ex-Govt. Lenses ex-Govt prisms, Nos. 1 and 2, price . English Rayleigh Rd., Hutton. Brentwood. Essex. T0I81 I.P.R.E. technical publications. 5.500 AlignIree: data for constructing TV aerial styenot meter. 7/6; samp.e copy The Practical Radio Engineer," quarterly publication of the Institute Sec. Membership and examination data. 1 . - .

A DVANCED Theory of Waveguides." By I ng problems arising in work on this comple sulject. The author has selected for diseussion a number of topics as representative of the field in which the micro-wave engineer is engaged. many of the examples being concerned uith the rectangular wavegulde. $30 /$ - net from ali book Dorset House. Stanford St., London. S.E.
TELEVISION Explained, '" By W. E, Miller and illustrates television reception circuits. and illustrates television reception chrcuits and operation. frequency allocations and remedies for faulty reception. Provides a valuable grounding in the circuitry encountered ${ }_{5} 1$ hen maintaining television sets. 4th Edition. 5/- net from all bookseliers. $5 / 4$ by post from Ilifle \& Sons. Ltd., Dorset House, Stamford St.
MICROPHONES." By the Engineering Training Dept. B.B.C Discusses the requirements for microphones in a broadcasting
studio. sets out the laws relating to sound waves and their behaviour, and describes the design and their behaviout, and describes the design phone-with special reference to those used by the B.B.C. 15/-net from all booksellers. 15/5 by post from Ilifie \& Sons Ltd.. Dorset House. Stamford St.. London, S.E.I.
DEELOPMENT of the Guided Missile. main information now available on the develop ment of gilded weapons in Britain. U.S.A. Ger many. U.S.S.R. and elsewhere. Other chapters discuss guided missiles as instruments of re-
search into the upver atmosphere and outer space, and as vehicles of inter-planetary oute An appendiy shows the characteristics of 90 powered missiles known to have been designed or constructed. 10 s 6 d net from all booksellers By post los lld from Iliffe \& Sons Ltd., Dorse House, Stamford St.. London, S.E.1.

SOUND Recording and Reproduction." By A M.I.E.E., in collaboration with the B.B.C. Engineering Division Covers in detail the theory and practice of disc. magnetic and film used by the B.B.C. A number of appendices used by the B.B.C. A numbel of appendices available elsewhere. The volume is illustraced by over 170 photographs and drawings. $30 /$ - net from all booksellers. By past $30 / 7$ from Iliffe
\& Sons Lit. Dorset House. Stamford St. Lon
CUIDE to Broadcasting Stations," Compiled G by "Wireless World." Gives details of over 1.400 short-wave radio stations of the world and 550 European long- and medium-wave 6th Edition. 2/-net from all booksellers. 2/2 by post from Iliffe \& Sons Ltd.. Dorset House.

SHORT-WAVE Radio and the Ionosphere. '
By T. W. Bennington. A new edition of Radio waves and the Ionosphere" (first pubexisting ionospheric data can be apolied to existing ionospheric data can be applied to
everyday problems of short-wave transmission and reception 2nd Edition. 10/6 net from all booksellers, $10 / 10$ by post from Ilffe \& Sons Ltd.i Dorset House. Stamford St.. London.
"ELEVISION Receiving Equipment." By scription of each stage of the normal television scription of each stage of the normal televisiot
receiver. Other chapters deal with special circuits, faults and their remedies, selectivity, ser vicing. etc. 3 rd Edition. 18/- net from all book sellers. By post $18 / 8$ from Iliffe $\&$ Sons Ltd. Dorset House, Stamford St., London. S.E.1.

PROOPS OF KINGSTON RE-OPENING
 SATURDAY $4^{\text {TH }}$ JULY 1953

HUGE ASSORTED STOCK OF RADIO FLECTRICAL AND MECHANICAL COMPONENTS
AT OUR USUAL BARGAIN PRICES.
PROOPS BROS. LTD 39, CAMBRIDGE ROAD, KINGSTON-ON-THAMES

TEL: KIN 4614

DIRECT FROM THE MANUFACTURER

Dulci Radio/Radiogram Chassis
A / C 100-120 \& 200-250 VOLTS.
All chassis $11 \frac{1}{2} \mathrm{in} . \times 7 \mathrm{in} . \times 8 \frac{1}{\mathrm{i}} \mathrm{in}$. high. Latest type valves $6 B E 6,6 B A 6,6 A T 6,6 B W 6,6 \times 4$. Flywheel tuning. Negative feedback over

Fully Guaranteed - Mer

Model B3. Three Wavebands, Long, Medium Short. Gram. switching on W/Change switch ${ }^{3}$ Position Tone, Model B3, Plus Push Pull Stage; as B3 with extra valve 6 BW W. Output 6 watt max. Con
sumption 55 watt. Model B, Six Price Tax Pard 15 , tinuous in 5 ranges (4 BANDSPREAD) and MW. $185-550 \mathrm{~m}$. Six position Tone Switch (3 radio-3 gram.).

Price Tax Paid $215 / 15 / 0$
Escutcheon for 9in. x Sin.dial, 4/9 extra. Matching speakers P.M. type 3 ohms. 8in. or IOin. available difionsagainst remittance. Free particularsfromTHE DULCI CO. LTD.
97 VILLIERS Rd., LONDON, N.W. 2

THE
 BRITISH NATIONAL RADIO SCHOOL ESTD. 1940

NOW IN OUR THIRTEENTH YEAR AND STILL

NO B.N.R.S. STUDENT has ever falled

to pass his examination(s) after completing our appropriate

HIGH GAIN DISTORTIONLESS STUDY COURSE!

A.M.Brit.I.R.E. and

CITY and GUILDS Radio and Telecommunications Exams, etc., etc.

Pleose mention this advert. and send for free

[^22]
YOUR ENQU:RIES

are invited for all types of reconditioned COIL WINDERS, WAVE WINDERS \& MULTI WINDERS
by DOUGLAS, LEE, and WESTMINSTER, etc.

These mac'. ines are reconditioned as new.

Enquiries to
THE
COIL WINDING MACHINERY \& ACCESSORY CO.
MOBILE HOUSE, CLIFTON ROAD, MA!DA VALE, LONDON, W.2.

W'e have a large stock of

HIGH STABILITY RESISTORS

Trade enquiries invited: Marris \& Cartin Led. 42 Brook Street, London, W. 1 GRO. 5571

RADIO \& TELEVISION COMPONENTS
WE OPERATE A PROMI'T \& FFFICIENT MAIL ORDER SERVICE.
"VIEWMASTER" \& "TELE-KING" syecialists Easy tems arailable.
JAMES H. MARTIN \& CO. FINSTHWAITE, NEWBY BRIDGE, ULVERSTON, LANCS.

ALUMINIUM ALLOY SHEETS

Ex Government Surplus
SUITABLE FOR CHASSIS, Etc. Undrilled)
Limited Quantity Available.
Type No. 1. $14 \frac{1}{3} \mathrm{in}$.
x 12 itin. x 20 G .
2s. 6d. each.
Type No. 2. 17_{9}^{3} in. $\times 12$ fin. $\times 20 \mathrm{G}$

3s. 0d. each.
Type No. 3. 26 in . x
23in. x 20G. Round
Corners
5s. 0d. each.
Type No. 4. 22 in x $18 \frac{1}{2}$ in. x 18 G .. 5s. 0d. each SIZES STATED FOR TYPES Nos. 1 and 2 are the maximum rectangular pieces that can be cut from irregular shapes.

CARRIAGE PAID
REDUCTION FOR QUANTITIES TRADE ENQUIRIES WELCOMED
JOHN CASHMORE LIMITED, Steel Department, GREAT BRIDGE, TIPTON, STAFFS.

Tipton 2181/5.

COAXIAL RELAYS

BRITISH PATENT No. 667316

NEW HIGH SPEED
SENSITIVE A.C. \& D.C. MULTIPURPOSE. SOLENOID MAGNET. CONTACTS 250 VA. UP TO 6 PDT.

We wish to contact British Firm for manufacture under licence for Great Britain, france and U.S.A.

H. KUHNKE, G.M.B.H. MALENTE/GERMANY

MAYOR TV MIRROR

SPECIALLY DESIGNED as an aid to the TV engineer in the installation and servicing of television receivers, this apparatus (comprising a mirror and stand equipment) is being marketed to enable the engineer to view the picture whilst adjusting the rear controls.
The device stands 2 ft . high and can be extended to 3 ft . 4 ins . Whilst the mirror is adjustable to any angle. Erection or dismantling is effected quickly and easily and the apparatus when packed measures only I 8 ins Price 45/- each. Carr. Paid.
G. MAYOR, 22I Liverpool Road, London, N.l.

Tel : North 1402.

ET4336 TRANSMITTERS REQUIRED
£ 100 and upwards paid for models in good condition.
ALTHAM RADIO CO.,
JERSEY ST., MANCHESTER 4 Tei. No. Central 7834
YOU CAN TELEPHONE REVERSE CHARGE

14 Day (Electric) Automatic Switches
Reconditioned. Guaranteed one year, for controlling Window \& Poultry lighting, heating, etc.

$$
\begin{aligned}
& \text { From } 50 /=\mathrm{EACH} \\
& \text { Write for illustrated lists }
\end{aligned}
$$

DONOHOE'S (Timers) 6 GEORGE ST., NORTH SHIELDS, NORTHUMBERLAND

The John Aldred Reproduction Co. 36, Marylebone High St., London, W.I Welbeck 4058
"The logical outcome of wide professional experience in true quality reproduction willshortly be announced."

HIGH FIDELITY

frequency modulation

Enjoy the crystal clarity of FM transmissions up to 50 miles from the Wrotham Kent transmitter. Together with the absence of background noise and great power contrast FM offers the ultimate in contemporary speaker music. We make the latest design in receivers and by utilising clever techniques and new components, a high sensitivity with remarkable fidelity is produced The design is by Messrs. Amos \& Johnstone, as published in the " Wireless World."
Audio Output-2 pin socket-2/10V Input-coaxial socket-from 5ft. horiz dipole.
Power Requirements- 6.3 V . and 220 V . 28MA.

Price $£ 11 / 17 / 6$

Trade enquiries invited. Demonstrations: $3.4 .30 \mathrm{p} . \mathrm{m}$. daily, except Fridays BEL SOUND PRODUCTS CO.
Marlborough Yard, Archway, London, N. 19
A RO 5078 Nr. Archway (Nortbern Line) Underground
 AERIALS ENSURE THE BEST TELEVISION

TRY ONE AND SEE FOR YOURSELF

BRASS, COPPER, DURAL, ALUMINIUM, BRONZE
ROD BAR SHEET TUBE, STRIP WIRE 3,000 STANDARD STOCK SIZES
No Quantity too Small List on application H. ROLLET \& Co., Ltd.

6 Chesham Place, S.W.1.
SLOane 3463
LIVERPOOL BIRMINOHAM
MANCHESTER

MAGNETIC TAPE RECORDERS and COMPONENTS
from
WILL DAY, LIMITED
19 Lisle Street, London, W.C.2. GERrard 7105 and 4476 SEND Ifd. STAMP FOR LIST-SENT BY RETURN

HIGH CLASS

TAPE RECORDING EQUIPMENT

HEADS, DESKS, TAPE, ETC.
Send for lists
BRADMATIC LTD
STATION ROAD, ASTON, BIRMINGHAM, 6 Telephone: East 0574

CABINETS

T/V Cabinet as illustrated, $£ 15 /=,=$. Catalogue of T/V, Table, Radiogram and Speaker Cabinets available on request. Individual cabinets made to specification. BASS REFLEX corner Cabinet for Goodmans Axiom 150 Mk . II, $£ 26$. Corner Baffle for 8in. or 10 in , unit, $\mathbf{E 7 / 1 5 / - \text { . }}$

COMPONENTS
Comprehensive catalogue available.

TAPE IRECOIRIDER

We proudly present our latest product-a versatile portable Tape Recorder capable of being used as a high quality amplifier or radio receiver. Full details on request. List price $\mathbf{5 3}$ gns. Trade enquiries invited.

LEWIS RADIO CO. 120, Green Lanes, Palmers Green, London, N.13. (Near Bowes Road) Phone: BOWes Park 6064.

FIRE!

PRODUCTION LOST BUT FOR NU $\mathrm{N}=\mathrm{M} \mathrm{E}$
A spark...a flash...fire blazing ..dial 999! But for at least five minutes that blaze will be YOURS alone! Reliable Nu-Swift is the world's fastest and most certain fire-killer. Nu-swift ltd • Elland . yorks In Every Ship of the Royal Navy

THE NEWEST TREPANNING PARALEX adjustable FLY CUTTER PLM Morse Taper No. 2 cap. $1 \frac{1}{2}-6 \frac{1}{2}$ in. $27 /$ - ea. PLX $\frac{1}{2}$ in. parallel shank cap. 1 $1 \frac{1}{\text { - }} 6 \frac{1}{2} \mathrm{in}$ 21/-ea. PL $7 / 16 \mathrm{in}$. or $3 / 8 \mathrm{in}$. paralle!
shank cap. I-4in. $16 /-\mathrm{ea}$.
With 18% Tungsten Highspeed Toolbit. Send for illustrated

folder to the Manufacturers

LUDFRY LTD. 189, Wardour Street, London, W.I

 Tel.: GERrard 2291.

Enthusiastic amateur and experienced research workers send these testimonials of Savage accuracy and reliability.
" A transformer and 2 chokes of your make purchased about 1932 are still daing yecman service.
T. F. MacD., London."

SAYAGE
 엥
 DEYIZES

SAVAGE TRANSFORMERS LTD Nursteed Road, Devizes, Wilts Telephone: Devizes 536

CLASSIFIED ADVERTISEMENTS

Use îhis Form for your Sales and Wants

To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford St., London, S.E.I
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- RATE; $7 /$ for TWO LINES. $3 / 6$ every Additional Line, Average six words per line.

NAME

- Name and address to be included in charge if used in advertisement.
- Box No. Allow two words, plus $1 /-$

ADDRESS.

- Cheques, etc., payabie to lliffa \& Sons Ltd., and crossed \& Co.
4 PRESS DAY - July 2 for August issue.
\qquad

MORSE CODE Training

gOURSES for BEGINNERS and OPERATORS, also a SPECIAL COURSE for passing the G.P.O. Morse Test for
securing an AMATEUR'S TRANSMITTING LICENCE. BOOK OF FACTS
It gives details of all Courses
Fees are reasonable.
Terms: Cashor Monthly Payments.
THE CANDLER SYSTEM CO. (55W) 52 b ABINGDON RD., KENSINGTON LONDON, W. 8

Candler System Co., Denver, Colorado, U.S.A.

-Hadiospares' Quality Parts
 The
 Serrice Engineer*'s First Choice

INSTRUMENT CASES

SUTTON COLDFIELD ELEGTRIGAL ENGINEERS 6 High Street WALSALL, phone: 4962

INGEX TO ADVERTISERS

A.A. Tools
A. B. Metal Products. Ltd

Acouslical Mig. Co.. Ltd
A.D.S. Relays, Ltd

Advance Components, Ltd
Aerialite, Ltd.
Aircraft Radio Industries. inc
Airmec, Ltd. Roproduction Co..........
Allen Components. Lid.
Alpha Radio Supply Co.. The
Amblex Appliances (Kent). Ltd.
Amplivox. Ltd.
Antiference, Ltd
Appointments Vacant
Arcolectic Switches, Ltd.
Armstrong Wireless \& Television Co., Litd
Armstrong H
Ashinown,
Ashworthatic Coil Winder \& Electrical Equipt
Co., Ltd., The
Autonatic Telephone os Electric Co., Ltd.
Autoset (Production), Lte
A.W.F. Radio Products

Baird Television. Itd.
Barker Natural Reproduce:s
Belling \& Lee, Ltd. Cound Products Co
Benson, W. A
Berry's (Short Wave). Ltd
Birmingham Sound Reproducers, Lid B. K. Partners. Ltd

Bradmatic, Ltd.
Britain, Chas. (Radio). Ltd
Britain, Chas. (Radio). Ltd
British Communications Corpn. Ltd
British Communications Corpn Ltd nology
British National Radio School
British Physical Laboratories
British Sarazol. Itd.
Brookes Crystals, Ltd.
Brown, S. G.. Ltd. Ltd.
Bulgin. A
Bull. J. \&
Sons
Bull. J., \&
Bullers. Ltd.
Candler System Co.
Chaffey Cabinet Co.. Th
Champion Products
Chapman C. T. (Reproducers), Ltd.
Chassey Bros (Pvt.). Ltd
Cinema Television,
City \& Rural Radio
City Sale \& Exchange, Ltd
Clydesdale Supply Co.., Ltd
Cohen, D.
Coil-Winding Machinery \& Accessory Co
Colonial Service-Sarawak
Cosmocord, Ltd.
Coventry Rentry Technical Colyege
Davis. Alex, Supplies. Ltd.
Davis. Alex, Supplies, Ltd
Day, Will, Ltd
Direct TV Replacements
Donohoe's (Timers)
Drayton Regulator \& Instrument Co., Lid
Dubilier Condenser Co. (1925), Ltd.
Duke \& Co.
Duici Co., Ltd., The
Dun (Electronics) \& Co
Easco E'ectrical, Ltd.
Edison Swan Electrical Co.. Ltd. Cover ii, 31
Edison Swan Electrical Co.. Ltd. Cover ii, 31 Egen Electric, Ltd
Electrical Instrument Repair Service, The Electro Acoustic Developments
Electro Acoustic Industries, Ltd.
Electro Technical Assemblies
ectro-winds, Ltd
Electronic Instruments, Ltd.
Electronic Precision Equipment 8
E.M. Factories, Ltd.
E.M.I. Institutes

Engineering Associates

Engiish Eiectric Co.. Ltd.. The
Eta Tool Co. (Leicester). Ltd.
Fluxite, Ltd. Foyle, $^{\text {F... Ltd }}$
Frith Radiocraft, Lid

Galpins

Garland Bros.
Gurrard Engineering \& Mfg. Co.. Ltd., The General Electric Co., Ltd.
G.L. Electionics
i6b

Goodmans Industries, Ltd
Goodsell. Ltd
Gray, Arthur, Lid
Grundig (Gt. Britain), Ltd
Hallam, Sleigh \& Cheston. Ltd.
Hall Electric. Ltd.
Hanney,
Haris.
Hartis H. Instruments
Hatfield Instruments, Ltd
Haynes Radio
Haynes Radio, Ltd. Telegraph Works Co
Henley's, Ltd.
Henry's
Hivac
Hivac, Ltd.
Holle. Arthur Holley s Radio Stores
Homelab Instruments
H.P. Radio Services. Ltd.

Hunton. Ltd.
Imhof. Alfred Ltd
International Correspondence School. Ltd.
Jackson Radio Supplies
Kenroy. Ltd.
Kolectric. Ltd
Kuhuke. H., GM.B.H
Labgear (Cambridge). Ltd.
Leak, H. J. \& Co.. Ltd. Ltd
Lewin. A. Ltd.
Lewis Radio Co.
Lockwood \& Condon Central Radio Stores
L.R. Supply Company. Ltd.

Ludfry, Ltd.
Lyons Radio. Ltd
Marnetic Coatings. Ltd
Marconi Instruments, Lta
Marconi's Wireless Telegraph Co., Ltd.
Marks, C. \& Co
Marris \& Cartin, Ltd
Martin, J
McElroy-Adams Mfg Group. Ltd.
McMurdo Instrument Co. Litd. The Metropolitan-Vickers Electrical Co.. Ltd. Miers, N. \& Co.. Ltd
Minnesota Mining \& Mfg. Co., Ltd.
Modern Book Co.
Modern Electrics, Ltd.
Modern Techniques
Morley Transformers
MR. Supplies, Ltd.
M.S.S. Recording Co.. Ltd

Mullard. Ltd.
Neo Electrical ludustries, Ltd.
Newman, J. \& S., Ltd.
Northall.
Northern Radio Services
Northern Transformer Co.
Nusound Products
Nu-Swift, Ltd
Oddie Bradbury \& Culi," Ltd.
Oryx Electrical Liboratories
Osmor Radio Products. Ltd

Painton \& Co., Ltd.
Panda Radio Co. ..
Parkel, A. B.
Parmeko, Ltd.
Parmeko, Ltd.
Parsonage, W. F. \& Co., Ltd
partridge Translormers. Ltd.
Pearce, T . W
Phillips control (G.B.), Ltd
Pitman, Sir lsaac, \& Sons, Ltd
Post Radio Supplies
Pratts Radio Co.
Pye, Ltd
Proof Bros
Pye, W. G.. \& Co., Ltd
Quality Mart
Quartz Crystal Co. Ltd
Radio \& Electrical Mart, The
Radio Exchange Co
Radio Man Raves. Ltd.
Radio Supply Co.
R.C. Services (Radio) Ltd... The

Record Electrical Co.. Ltd.. The
Redifon, Ltd.
Rediance Mtg. Co. (Southwark), Ltd
Reproducers \& Amplifiers. Ltd Robinson. F. C., \& Partners. Ltd. Robshaw Frothers. Ltd. Roding Laboratories
Rogers Developments Co.
Rola Celestion. Ltd.
Rollet, H, \& Co., Ltd. Ely. Ind
Sallis. A. T.
Samsons Weston tore
Savage Transformers, Ltd
Scharf, Edwin
Service Radio Spares
Sherman's Supply Co
Smith, G. W (Radio) Lid
Smith, H. Laboratory Instruments. .
Sound Sales. Ltd.
Spencer-K est
Standard Telephones \& Cables, Ltd
Stern Radio, Ltd. 46, 90
Sugden. A. R., \& Co. (Engineers), Ltd
Supacoils Coldfield Electrical Engineers
Szymanski, S.
Taylor Electrical Instruments, Lid.
Taylor Tunnicliff \& Co., Ltd.
Telecraft. Ltd Telegraph Condenser Co.. Ltd
Telekit Supply Co.
Telemechanics. Ltd
Tele-Rad (1943). Ltd
Thomas, Richard \& Baldwins. Ltd
Transformer Supply Co., The
Transsadio. Ltd.
Trusound. Ltd
Universal Elechrical
Universal Electronics
University Radio, Ltd.
Valradio, Ltd.
Venner Accumulators. jid
V.E.S. Wholesale Services. Ltd.

Voigt Patents. Ltd
Vortexion, Ltd.
Westinghouse Brake \& Signal Co. Ltd.
Weymouth Radio Mfg Co.. Ltd.. The
Wharfedale Wireless Works Wilkinson, L
Winter Trading Co... Ltd
Wireless Supplies Unlimited
Woden Transformer Co.. Ltd.
Wright \& Polytechnic
Wright \& Weaire. Ltd
Young.
C

[^0]: Marketed by Enthoven Solders Limited, Enthoven House, 89, Upper Thames Street, London, E.C.4. Tel. Mansion House 4533 .9610

[^1]: Telephone HITher Green 4600

[^2]: Drayton Regulator and Instrument Co. Lid., West Drayton, Middx.

[^3]: Works Address: 16-18, Heywood Rd., Castleton, Nr. Rochdale, Yorks. 'Phone: Castleton 57396. Cables: PANDA, Rochdale.

[^4]: - Y Amplifier response flat from D.C. to $5 \mathrm{Mc} / \mathrm{s}$
 - Sensitivity of 100 mV per cm . at I kV. E.H.T.
 - No overloading occurs with full screen deflection over the complete frequency range at 2 kV . E.H.T.
 - Variable E.H.T. voltage of I, 2 and 4 kV .
 - Automatic Brilliance Control Circuit
 - Time-base range from 0.5 seconds to 1 microseconcl for full screen deflection
 - Versatile Auxiliary Amplifier incorporated
 - A deflection of 1 cm . ensures rigid synchronisation over the whole frequency range

[^5]: HALL ELECTRIC LTD HALTRON HOUSE, 49-55 USSON GROVE, LONDON N.W.
 Tel.: Ambassador 1041 (5 lines) Cables: Hallectric, London

[^6]: LEEVERS-RICH EQUIPMENT LTD., 80, WARDOUR STREET, LONDON, W. GER, 4502

[^7]: Reprints of this advertisement, together with additional practicalhints, may be obtained free of charge from the address below.

 MULLARD LTD., Technical Publications Department, Century House, Shaftesbury Avenue, London, W.C.2.

[^8]: 'E. D. Parchment. " Microgroove Recording and Reproduction, 7. Arit, I.R.E. Vol. 12, No. 5, May, 1952, p. 275
 ${ }^{2}$ S. Kelly. " The Crystal Pickup with Special Reference to Longplaying Records," Yournal British Sound Recording Association, Vol. 3, No. 8, April, 1951 , p. 174.

[^9]: * Information Theory and its Engineering Applications. By D. A. Bell. M.A., B.Sc. (Oxon), M.I.E.E. Pp. $138+$ viii; Figs. 29. Sir Isaac Pitman \& Sons, Pitman House, Parker Street, Kingsway, London, W.C.2. Price 20 s .

[^10]: "Adaphone " Type M3 extension hearing aid.

[^11]: * "Spectrum Equalization" by G. G. Gouriet; Wireless Engineer, May, 1953.

[^12]: * "Report on she Census of Production for 1950: Vo. 4 Engineering, Shipbuilding and Elec:rical Goods." H.M.S.O. 2s.

[^13]: ${ }^{1}$ Tele-Tech, November 1951; Electronics, November and December

[^14]: Magnetic tape recording equipment made by H. Silver and awarded the Committee Prize.

[^15]: * "Duals." April 1952. p. 152.

[^16]: * The critical reader will point out that to an observer accelerating towards or away from the sender the frequency is not fixed either, but even when taking off in one's spaceship the selectivity would have to be rather excessive for serious mistuning to be experienced!

[^17]: * "The History of British Army Signals in the Second World War." By Major-General R. F. H. Nalder, C.B., O.B.E. Pp. 377. Published by Royal Signals Institution. Obtainable from Gale and Polden, Wellington Press, Aldershot. Price 17 s 6 d post free.

[^18]: * "Radio Spectrum Conservation"; a Report of the Joint Technical Advisory Committee of the Institution of Radio Engineers and the Radio-Television Manufacturers' Association of the U.S.A. McGraw-Hill Book Company; price in U.K., 42 s 6 d .

[^19]: COME AND SEE IT WORKING

[^20]: One minute from Leicester Square station (up Cranbourn Street) Shop Hours: 9-6 D.m. (9-1 p.m. Thursday).

 Open all day Saturday.

[^21]: gin. ESCUTCHEON. Brown Bakelite. Ruitable plate glass and mask for 9in, tube. Price $7 / 6$.

[^22]: sTUDIES DIRECTOR
 BRITISH MATIONAL RADIO SGHOOL
 68, ADDISCOMBE ROAD, GROYDON Phone : Addiscombe 3341

